
Choosing the Best
Intel® Integrated Performance
Primitives Linkage Model
for your Application for
Intel® Architectures

 W H I T E P A P E R

Version 1.0

December 2003

2 3

Introduction
Intel® Integrated Performance Primitives (Intel® IPP)
is a software library that provides a broad range of
functionality including general signal, image, speech,
graphics and audio processing, vector manipulation,
matrix math, string processing and cryptography.
It also provides more sophisticated primitives for
construction of audio, video and speech codecs such
as MP3, MPEG-1, MPEG-2, MPEG-4, H.264, JPEG,
JPEG2000, G.722, G.723.1, G.726, G.728, and G.729,
plus algorithms for speech recognition and computer
vision.

By supporting a variety of data types and layouts for
each function, and by minimizing the number of data
structures used, the Intel IPP library delivers a rich set of
options for developers to choose from while designing
and optimizing an application. The library functions are
optimized for Intel’s latest processor architectures, and
some functions offer automatic run-time dispatching of
the best optimizations. For more information about Intel
IPP, visit www.intel.com/software/products/ipp/

Intel IPP is optimized for the broad range of Intel®
microprocessors: the Intel® Pentium® 4 processor with
Streaming SIMD Extensions 3; the Intel® Pentium® 4
processor; the Intel® Pentium M processor, component
of Intel® Centrino™ mobile technology1; the Intel®
Itanium® 2 processor; Intel® Xeon™ processors; and
Intel® Personal Internet Client Architecture (Intel®
PCA) application processors based on the Intel
XScale® microarchitecture. With a single application
programming interface (API) across the range
of architectures, developers can have platform
compatibility and reduced cost of development. The
built-in dispatcher capability in Intel IPP chooses the
best optimizations, and run-time processor detection
automatically dispatches processor-specific code.

For Intel PCA, Intel IPP provides static-linked libraries
for embedded applications. For Pentium and Itanium
architectures, Intel IPP supports several different linkage
models, allowing the developer to choose one that
best suits their application development environment
and application deployment constraints. Table 1
summarizes the choices.

www.intel.com/software/products/ipp/

2 3

Table 1. The Four Intel® Integrated Performance Primitives (Intel® IPP) Linkage Models

Linkage Model Description

Intel® IPP
Dynamic Linkage

This is the full set of Intel IPP library functions, including all functions,
optimizations for all processors, and automatic run-time dispatching for
multiple processor types. The Dynamic Link Libraries (DLLs) supporting this
linkage model are pre-packaged as the Intel IPP Runtime Installer (RTI) for
easy redistribution with developers’ applications.

Custom Intel® IPP Dynamic
Linkage

This is a compact distribution for multiple Intel IPP-based applications, with
automatic run-time dispatching for multiple processor types. This model
includes the functions and processor-specific optimizations for only those
functions/libraries used by the specific application.

Intel® IPP Static Linkage with
Dispatching (E-Merged)

This is a compact, self-contained application (no requirement for Intel IPP
run-time DLLs), with automatic dispatching for multiple processor types.
This model is most appropriate for distribution of a single Intel IPP-based
application where code sharing enabled by DLLs provides no benefit.

Intel® IPP Static Linkage without
Dispatching

This model has the smallest footprint, is optimized for only one target
processor type, and is best suited for kernel-mode or driver use.

This document compares and contrasts each of the
linkage models and discusses the pros and cons of
each. The discussions include these considerations:

• Relative ease-of-use

• Applications for which each model is best suited

• Memory and disk footprints

• Requirements for rebuilding when integrating Intel
IPP updates

• Requirements for application installation

This document begins with information on the Intel
IPP naming convention and on the organization of
Intel IPP functions into libraries. This information plays
an important role in understanding how to use each
linkage model.

Organization of Intel Integrated
Performance Primitives
Functions
Intel IPP functions are primarily organized in the
following ways (as of Version 4.0):

Data Domain
This is a broad category of Intel IPP functions that share
a general data model. The Data Domain determines the
prefix segment of a function name and also the location
of the function’s documentation within the Reference
Manuals. The three Intel IPP Data Domains are:

• Signal Processing: Operations on one
dimensional (1D) vectors of “signal” data. The
function-name prefix is “ipps”

• Image Processing: Operations on (2D) arrays of
“image” data. The function-name prefix is “ippi”

• Matrix: Operations on matrices, specifically
optimized for small matrices. The function-name
prefix is “ippm”

4 5

Application-Domain
A focused category of Intel IPP functions that share
a specific use. Sometimes associated with a set of
closely related industry standards, each application-
domain contains a set of static and dynamic libraries
that use consistent naming conventions. In other
words, the application-domain determines which Intel
IPP libraries to link with for any given Intel IPP function.
The application-domains for Version 4.0 of Intel IPP are
currently:

• ipps signal processing functions

• ippi image processing functions

• ippj JPEG/JPEG2000 functions

• ippsr speech recognition functions

• ippsc speech coding functions

• ippac audio coding functions

• ippvc video coding functions

• ippm small matrix operation functions

• ippvm vector math functions

• ippcv computer vision functions

• ippcore Intel IPP common and generic
 functions

• ippch string functions

• ippcp cryptographic functions

• ippalign Intel PCA compatibility functions
 (depreciated)

The Application-Domain grouping (or the library
name) is reflected in the chapter names in the Intel
IPP Reference Manuals at www.intel.com/software/
products/ipp/docs/manuals.htm. For example, the
function ippsCopy_8u (memory copy of byte arrays) is
one of the signal processing functions and is located
in library ipps20.lib (an import library for dynamic
linking, libipps.so for Linux*).

NOTE:
The Application-Domain grouping is distinct from the
Intel IPP Data Domain function prefixes, which denote
only the data dimension – ipps for one-dimensional
and ippi for two-dimensional data.

Target Processor
The libraries are also grouped by processor-specific
optimizations using the following naming convention (in
Version 4.0 of Intel IPP):

px generic C-optimized code

a6 code optimized for Pentium III processor

w7 code optimized for Pentium 4 processor

t7 code optimized for the Intel Pentium 4
 processor with Streaming SIMD Extensions 3

i7 code optimized for Itanium and Itanium 2
 processors

Be mindful of the processor identifiers whenever
creating Intel IPP-based applications without the
automatic processor-specific dispatching. Be careful
specifying the processor identifier for processor-
specific versions of Intel IPP functions. Choosing the
wrong identifier could lead to installation of the wrong
processor-specific run-time DLLs.

These processor identifiers are used as a prefix for
processor-specific function names. For example,
ippsCopy_8u has many versions, each optimized to
run on a different Intel processor type. The Pentium 4
processor-specific function name for this function is
w7_ippsCopy_8u().

The processor identifiers are also used as a suffix
for the processor-specific dynamic link library files
containing functions optimized for that processor. For
example, the Pentium 4 processor-specific functions for
signal processing are located in ippsw7.dll (dynamic
link library) and ippsw7.so (shared object).

For static linkage, all processor-specific versions of
functions in the same application-domain are combined
into one “merged library” file for the application domain,
with the Intel IPP function names for each processor-
specific version prefixed by the processor identification.
This is often referred to as the “decorated name.” For
example, ippsmerged.lib (libippsmerged.a for
Linux) contains px_ippsCopy_8u, a6_ippsCopy_8,
w7_ippsCopy_8u, and t7_ippsCopy_8u.

The code optimized for Itanium processors is in a
separate library due to the different 64-bit format.

www.intel.com/software/products/ipp/docs/manuals.htm
www.intel.com/software/products/ipp/docs/manuals.htm

4 5

2. File locations at installation time. When installing
the application, are there restrictions on placing
files in system folders?

3. Number of co-existing Intel IPP-based
applications. Does the application include multiple
Intel IPP-based executables? Are there other Intel
IPP-based applications that often co-exist on the
users’ computers?

4. Memory available at run-time. What are the
memory restrictions on the users’ computers at
run-time?

5. Kernel-mode vs. User-mode operation of
application. Is the Intel IPP-based application
a device driver or similar “ring 0” software that
executes in Kernel mode at least some of the
time?

6. Processor types supported by application. Will
various users install the application on a range
of processor types, or is the application explicitly
supported only on a single type of processor? Is
the application part of an embedded computer
where only one type of processor is used?

7. Development resources. What resources are
available for maintaining and updating customized
Intel IPP components? What level of effort is
acceptable for incorporating new processor
optimizations into the application?

8. Release, Update, Distribution plans. How often
will the application be updated? Will application
components be distributed independently or
always packaged together?

The answers to these questions will help determine
which linkage model is best for a given application.

Things to Consider When
Choosing a Linkage Model
When using a library of functions in the development
of an application, developers must decide whether the
functions will be statically linked or dynamically linked
with the application. The choices are relatively simple.
They are based on a trade-off of complexity versus
size versus flexibility. Dynamic linkage allows multiple
applications to share the same code and can reduce
the overall size of the applications and their supporting
dynamic libraries.

In general, using the Intel IPP Dynamic Link Libraries
(DLLs on Windows*, Shared Objects on Linux*) is
the simplest linkage model to develop with and also
the simplest in terms of application distribution.
By using the full set of Intel IPP DLLs for run-time
support, developers need not focus on which Intel IPP
functions are used in an application when determining
what components to redistribute. And the run-time
components come pre-packaged for redistribution
with the developer’s application. However, there are a
number of constraints that may apply to an application,
its development environment, and its target installation
environment.

Since each application has its own unique set of
constraints, developers must consider the specific
install-time and run-time constraints and requirements
of the application, as well as development resources
available and the release, update, distribution plans
for the application. Before choosing a linkage model,
developers should answer these questions:

1. Executable and/or application installation
package size. Are there limitations on how large
the application executable can be? Are there
limitations on how large the application installation
package can be?

6 7

Processor-specific
optimizations for
Intel® Pentium® 4

processor

Processor Detection
(Files used at link-time or run-time:

ippcore.dll)

Dispatchers
(Domain Import Libraries

and Run-time DLLs)

ipps20.lib (ipps20.dll)
ippi.lib (ippi20.dll)
ippj20.lib (ippj20.dll)

Processor-specific
optimizations

for the
Intel® Pentium® 4
processor with

Streaming SIMD
Extensions 3

Processor-specific
optimizations for
Intel® Pentium® III

processor

Intel® Pentium®
processor-
compatible

optimizations

Processor-optimized Libraries

Figure 1. Intel® Integrated Performance Primitives Dynamic Linkage

Linkage Models and Calling
Conventions
In addition to the usual choices of static versus dynamic
linkage, the processor-specific dispatching aspect of
the Intel IPP library creates another dimension, yielding
four distinct linkage models (two dynamic and two
static). For summary descriptions of the models, see
Table 1. The descriptions that follow provide more
information about how and when to use each model.

Intel Integrated Performance Primitives
Dynamic Linkage
The Intel® IPP Dynamic Link libraries (or Shared Objects
on Linux*) is the model that is simplest to use and
probably the most commonly used. The benefits of
run-time code sharing among multiple Intel IPP-based
applications, automatic dispatching of processor-
specific optimizations, and the ability to provide
updated processor-specific optimizations without
relinking or redistributing the application executable
outweigh most other concerns. This model offers the
best way to ensure that the end-users of the application
experience great performance on their PCs.

By detecting the processor type at runtime during the
DLL initialization, this model dispatches the processor-
specific optimizations automatically. This means that the
optimizations of ippsCopy_8u for Pentium 4 processors
will be used on Pentium 4 processor-based systems,
and the optimizations for Pentium III processors will
be used on Pentium III processor-based systems. This
mechanism is illustrated in Figure 1.

The import libraries ipps20.lib, ippi20.lib, etc. are
used at link time. The runtime library ippcore.dll
features the processor detection mechanism, and
ipps20.dll, ippi20.dll, etc. direct execution to the
lower-level, processor-specific optimizations for the
Intel IPP functions, a process also known as
dispatching. During the DLL initialization, functions
in ippcore.dll are called to obtain the processor
identification, and then a “waterfall” procedure is carried
out to determine the best available optimization (t7,
w7, a6, or px). Finally, all functions in ipps20.dll,
ippi20.dll, etc. are redirected to corresponding
processor-specific optimized libraries. This detection
and dispatching process is automatically handled for
the application. For Linux, the library names are slightly
different, but the same mechanism applies.

6 7

The distribution of applications based on this linkage
model is further simplified by the presence of pre-
packaged Intel IPP run-time libraries, which may be
redistributed with Intel IPP-based applications. The
Run-Time Installer, or RTI package, automatically
installs a full set of Intel IPP runtime libraries in the
system or specified directory. Most applications are
good candidates for using this linkage model. This is
the recommended linkage model for Intel IPP.

Benefits
This model offers:

• Automatic run-time dispatch of processor-specific
optimizations

• Enabling updates with new processor
optimizations without recompile/relink

• Reduction of disk space requirements for
applications with multiple Intel IPP-based
executables

• Enabling more efficient shared use of memory at
run-time for multiple Intel IPP-based applications

• Simple redistribution of Intel IPP run-time libraries
via RTI package

• Additional performance gains from threaded
implementations in some Intel IPP functions (only
available via Intel IPP DLLs). See www.intel.com/
support/performancetools/libraries/ipp/ia/
thread.htm for details on the use of threading in
Intel IPP functions

Considerations
Before using this model, consider these implications:

• Installation package size: application + ~27-MB
RTI package for Intel IPP 4.0

• Application executable requires access to Intel IPP
run-time dynamic link libraries (DLLs) or Shared
Objects (SOs) to run

• Not appropriate for kernel-mode/device-driver/
ring-0 code

• Not appropriate for web applets/plug-ins that
require very small download

• There is a one-time performance penalty when the
Intel IPP DLLs (or SOs) are first loaded

To dynamically link with Intel Integrated
Performance Primitives

1. Include ipp.h (and/or corresponding domain
include files) in your code.

2. Use the non-decorated Intel IPP function names
(for example, ippsCopy_8u) in the application
code.

3. Link corresponding domain import libraries. For
example, if ippsCopy_8u is used, link against
ipps20.lib (ipps.so on Linux).

4. Ensure run-time libraries, for example ipps20.dll
(ipps.so on Linux), are on the executable
search path at run time. The Run-Time Installer
package is the simplest way to ensure this. For
further details on the Intel IPP RTI, consult the
readme.htm located in the runtime folder where
the Intel IPP product has been installed (typically
c:\Program Files\Intel\IPP\tools\runtime,
on Windows).

Custom Dynamic Linkage in
Intel Integrated Performance Primitives
If a smaller installation package is required, developers
can accomplish this while retaining the key benefit of
full processor range coverage and most of the other
benefits of the standard Intel IPP Dynamic Linkage
model. The Custom Intel IPP Dynamic Link library,
which provides only the Intel IPP functions needed
by the application(s) being linked, offers this smaller
solution. For companies that develop core technologies,
code that ships with many of their products must run
on any Intel processor while still having a small footprint.
The Custom Intel IPP Dynamic Link library is the right
model.

Benefits
This model offers:

• Run-time dispatching of processor-specific
optimizations

• Reduced hard-drive footprint compared with a full
set of Intel IPP DLLs/SOs

• Smallest installation package to accommodate
use of some of the same Intel IPP functions by
multiple applications

http://www.intel.com/support/performancetools/libraries/ipp/index.htm
http://www.intel.com/support/performancetools/libraries/ipp/index.htm
http://www.intel.com/support/performancetools/libraries/ipp/index.htm

8 9

developers. If not all processor optimizations are
required, it is possible to create customized E-merged
libraries that only contain a subset of processor
dispatching. The E-Merged libraries provide a static
linkage model with processor-specific dispatching
included. The distribution of applications based on this
linkage model is quite simple since the application .EXE
is self-contained.

Figure 2 illustrates the relationship between the
different static libraries used with the E-merged static
dispatching model.

The library ippcorel.lib (ippcorel.a on Linux)
contains the runtime processor detection functions for
initializing the dispatch mechanism.

The E-merged libraries (such as ippsemerged.lib)
provide the non-decorated entry point for the Intel
IPP functions, along with the dispatching mechanism
to each processor-specific implementation. The
corresponding processor-specific functions in
the merged libraries are called by the functions in
the E-merged libraries, which do not contain any
implementation code. The overhead of this redirection
is only one jump instruction.

The merged libraries (such as ippsmerged.lib) contain
all processor-specific implementations. Each function
entry point is prefixed by a processor identification
string, as outlined in the “Organization of Intel IPP
Functions” discussion in this document.

The E-merged libraries require initialization before
any non-decorated function names can be
called. To initialize first, developers may choose
ippStaticInitBest(), which initializes the library to
use the best optimization available (the same waterfall
procedure as in the dynamic linkage model), or function
ippStaticInitCpu(), which lets developers designate
only one specific processor type.

E-Merged libraries provide a pre-determined
dispatching mechanism for application developers.
If some processor optimizations are not required,
developers can create customized E-merged libraries
that contain only a subset of processor dispatching.
This model is often the best choice when static linkage
is required along with support for multiple processor
types.

Considerations
Before using this model, consider these implications:

• Application executable requires access to Intel IPP
run-time DLLs or SOs to run

• Developer resources are needed to create and
maintain the Custom DLL

• Integration of new processor-specific
optimizations requires rebuilding the Custom DLL

• Not appropriate for kernel-mode/device-driver/
ring-0 code

To build a Custom DLL
1. List all Intel IPP functions that will be used. Copy

and paste the function prototypes from the
corresponding “include files” (for example, ipps.h)
into mydll.h (where ‘mydll’ is an example name;
replace it with your own).

2. In mydll.c, write a DLL initialization
function called DllMain(), and from it call
ippStaticInitBest() to initialize the Intel IPP
dispatching mechanism.

3. Also in mydll.c, write a wrapper function for each
function in mydll.h. The wrapper function serves
as a direct jump to the correct processor-specific
optimized version of the Intel IPP function.

4. Compile mydll.c as a dynamic link library, and
link it against ippsemerged.lib, ippsmerged.lib
and ippcorel.lib. The import library mydll.lib
will be generated automatically.

See the Appendix for an example of mydll.h and
mydll.c.

Once this process has been mastered, developers can
apply more advanced techniques, such as merging
other shared code into this DLL or writing function
wrappers to link only a subset of the processor-specific
optimizations.

Static Linkage with Dispatching (E-Merged)
If a dynamic linkage is not desired, developers can use
a static linkage model while retaining the key benefits
of full processor range coverage and some of the
other benefits of the standard Intel IPP Dynamic Link
Library model. This is done by linking with the Intel IPP
“E-Merged” static libraries combined with the Intel IPP
merged static libraries. The E-Merged libraries provide a
pre-determined dispatching mechanism for application

8 9

Benefits
This model offers the following features:

• Dispatches processor-specific optimizations
during run-time

• Enables updates with new processor
optimizations without recompile/relink

• Creates a self-contained application executable

• Generates a smaller footprint than the full set of
Intel IPP DLLs/SOs

• Creates the smallest installation package when
multiple applications use some of the same Intel
IPP functions

Considerations
Before using this model, consider these implications:

• Intel IPP code is duplicated for multiple Intel IPP-
based applications because of static linking

• An additional function call for dispatcher
initialization is needed (once) during program
initialization

• This model is not appropriate for kernel-mode/
device-driver/ring-0 code

To link with Static Libraries with Dispatching
(E-Merged):

1. Include ippcore.h and ipp.h (and/or
corresponding domain include files).

2. Before calling any Intel IPP functions, initialize the
static dispatcher by calling ippStaticInitBest.
Alternatively, use ippStaticInitCpu instead to
force dispatching of optimizations for a specified
processor-type. Declare these functions in
ippcore.h.

3. Use the non-decorated Intel IPP function names
(for example, ippsCopy_8u) in the application
code.

4. Link corresponding E-merged libraries followed
by merged libraries, and then ippscorel.lib.
For example, if ippsCopy_8u is used, the
linked libraries are ippsemerged.lib,
ippsmerged.lib, and ippcorel.lib (order is
important).

px_ippsCopy_8u(…)
a6_ippsCopy_8u(…)
w7_ippsCopy_8u(…)
t7_ippsCopy_8u(…)

Stub library w/Dispatching:
ippsemerged.lib

ippsmerged.lib

ippsCopy_8u(…) {
Switch(cpu) {
case cpu_t7:
t7_ippsCopy_8u();
break
case cpu_w7:
w7_ippsCopy_8u();
break
case cpu_a6:
a6_ippsCopy_8u();
break
case cpu_px
default:
px_ippsCopy_8u();
break;
}

}

Processor Detection:
ippcorel.lib

ippStaticInitBest (…)

Application code:

void main(void) {
ippStaticInitBest();
…...
ippsCopy_8u(…);
…..

}

Figure 2. Static Linkage with E-merged Dispatching Model

10 11

Static Linkage Without Dispatching
(Merged Static)
To obtain the smallest footprint for Intel IPP-based
applications, link with the Intel IPP Merged Static
libraries. These static libraries contain copies of each
processor-specific version of the Intel IPP library
functions, merged into a library file specific to each
Intel IPP Application-Domain. Linking with the Merged
Static Libraries yields an executable containing no
unneeded Intel IPP functions. It also contains code
only for the chosen processor. The result is a footprint
even smaller than the E-Merged Static Linkage,
which includes the dispatcher and processor-specific
functions for multiple target processors. While this
model achieves the smallest footprint, it does so by
restricting the optimizations to one specific processor
type.

Figure 3 illustrates the Merged Static Linkage. Note
that only the processor-specific function referenced
in the application code is linked into the application
executable from the Intel IPP merged static library.

Each function entry point in the merged static libraries is
prefixed by a processor identification string as outlined
earlier in this document, allowing an application to
directly reference the Intel IPP function for one specific
(target) processor type. This eliminates the need for
the initialization and dispatching code contained in
ippcorel.lib and the E-merged libraries.

This linkage model is most appropriate when a self-
contained application is needed, only one processor
type is supported, and there are tight constraints on the
executable size. It is also the linkage model to use for
kernel-mode/device-driver/ring-0 code. One common
use is for embedded applications where the application
is bundled with only one type of processor.

Benefits
This model offers:

• Small executable size with support for only one
processor type

• An executable suitable for kernel-mode/device-
driver/ring-0 use

• An executable suitable for Web applet or plug-in
requiring very small file download and support for
only one processor type

• Self-contained application executable that does
not require Intel IPP run-time DLLs or SOs to run

• Smallest footprint for application package

• Smallest installation package

Considerations
Before using this model, consider these implications:

• The executable is optimized for only one processor
type

• Updates to processor-specific optimizations
require rebuild and/or relink

To link with Static Libraries without Dispatching:
1. Prior to including ipp.h in your code, define the

following preprocessor macros:

• #define IPPAPI(type,name,arg) extern
type __STDCALL w7_##name arg;

• #define IPPCALL(name) w7_##name

2. Include ipp.h in your code.

3. Wrap each Intel IPP function call in your application
with an IPPCALL macro as shown below. For
example, a call to ippsCopy_8u(…) would be
expressed as:

• IPPCALL(ippsCopy_8u)(…)

4. Link against the appropriate merged static library
(for example, ippsmerged.lib).

Summary
Intel IPP provides several linkage models to fit a wide
range of developer needs. With two dynamic linkage
models and two static linkage models to choose from,

Figure 3. Merged Static Linkage

ippsmerged.lib

px_ippsCopy_8u(…)

a6_ippsCopy_8u(…)

w7_ippsCopy_8u(…)

t7_ippsCopy_8u(…)

Application code:

void main(void) {
…..

w7_ippsCopy_8u(…);
…..

}

10 11

1 Wireless connectivity requires additional software, services or external hardware that may need to be purchased separately. Availability of public wireless
access points is limited. System performance, battery life and functionality will vary depending on your specific hardware and software.

developers can exercise a high degree of control over
the disk space and memory requirements of their
applications, as well as the installation complexity.
Correct implementation of a chosen linkage model
allows the developer to change to another linkage
model with relatively little effort. Choosing the best
linkage model is an important step in getting the most
from Intel IPP processor-specific optimizations.

References
The following documents are referenced in this
application note, and provide background and/or

supporting information for understanding the topics
presented in this document.

Intel® Integrated Performance Primitives are described
at: www.intel.com/software/products/ipp/

Intel® Integrated Performance Primitives for Intel®
Architecture Reference Manual, is located at:
www.intel.com/software/products/ipp/docs/
manuals.htm

Details on the use of threading in Intel IPP functions are
provided at: www.intel.com/support/performancetools/
libraries/ipp/ia/thread.htm

Appendix
Custom Dynamic Linkage Example

========= mydll.h ==========
#ifndef __MYDLL_H__
#define __MYDLL_H__

#ifndef IPPAPI
#define IPPAPI(type,name,args)
#include “ipps.h”
#undef IPPAPI
#define IPPAPI(type,name,args) extern type __STDCALL my_##name args;
#endif

#ifdef __cplusplus
extern “C” {
#endif

/* List Function Prototypes Here */
IPPAPI(IppStatus, ippsCopy_8u,(const Ipp8u* pSrc, Ipp8u* pDst, int len))
IPPAPI(IppStatus, ippsCopy_16s,(const Ipp16s* pSrc, Ipp16s* pDst, int len))
#ifdef __cplusplus
}
#endif
#endif // __MYDLL_H__

======== mydll.cpp =========
#define STRICT
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include “ippcore.h”
#include “ipps.h”

#undef IPPAPI
#define IPPAPI(type,name,args) __declspec(naked dllexport) \
void __STDCALL my_##name args { __asm {jmp name } }
#include “mydll.h”

BOOL WINAPI DllMain(HINSTANCE hinstDLL,DWORD fdwReason,LPVOID lpvReserved) {
switch(fdwReason) {
case DLL_PROCESS_ATTACH:
if (ippStaticInitBest()!=ippStsNoErr) return FALSE;
default:
hinstDLL;
lpvReserved;
break;
}
return TRUE;
}

www.intel.com/software/products/ipp/
www.intel.com/software/products/ipp/docs/manuals.htm
www.intel.com/software/products/ipp/docs/manuals.htm
 www.intel.com/support/performancetools/libraries/ipp/ia/thread.htm
http://www.intel.com/support/performancetools/libraries/ipp/index.htm
http://www.intel.com/support/performancetools/libraries/ipp/index.htm

Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95052-8119
USA

For product and purchase information visit:
www.intel.com/software/products

Intel, the Intel Logo, Itanium, Pentium, Intel Xeon, Intel XScale and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make
changes to specifications and product descriptions at any time, without notice.

Copyright © 2003, Intel Corporation. All Rights Reserved. 1203/JXP/ITF/XX/PDF 300350-001

www.intel.com/software/products

