
Build Safety from Bare Metal
- Practices on Hardening and Harnessing
the Secure Platform

PTAS002

Dong Wei, Fellow, HP
Qin Long, Software Architect, Intel
Jie Shen, Senior Security Consultant, McAfee Inc.

2

• Overview of UEFI and its Security Handling

• Platform Hardening Practices

• McAfee* Endpoint Encryption and Secure Boot

Agenda

The PDF for this Session presentation is available from our
Technical Session Catalog at the end of the day at:
intel.com/go/idfsessionsBJ

URL is on top of Session Agenda Pages in Pocket Guide

3

Agenda Item 1
Overview of UEFI and Its
Security Handling

Dong Wei
Fellow, Hewlett Packard
VP, UEFI Forum

4

Latest Updates from UEFI Forum

• Linux Foundation has signed the agreement
to become a UEFI Forum Contributor

• UEFI 2.3.1d errata available soon
• UEFI 2.3.1c SCT Final Draft soon
• UEFI 2.4 reaches content complete
• PI 1.3 reaches content complete
• Future of UEFI with system configuration and

management considerations

5

Real World!

Researchers find attack on
Millions of printers

Can a hacker take control of your
printer? Using it to sniff information
from the network, steal confidential
information, or even attack other
machines. Researchers have found an
attack impacting millions of printers
around the world.

6

Assets & Threats
Reset

Erase flash part
Overwrite flash
part

Erase op ROM
Overwrite op ROM

Network attacks

Spoof UEFI
application

Different colors for different vendors

System BIOS
-PEI recovery
-SMM,UEFI Core
-PK, KEK, CRTM

Option ROMs
UEFI drivers

Network Boot
IPv6 for the cloud

Pre-OS UEFI
application
OS Boot loader

Threats Assets

ROM Swap
Bit rot

BIOS Flash
Hardware
protection

7

UEFI Security – Motivation & History
• As OS becomes more resistant to attack, the threat

targets the weakest element in the chain
• History

– Phoenix* initiated the discussion on the need for secure boot
– USST (UEFI Security Sub-team) formed to address the topic
– The secure boot architecture was defined in the UEFI 2.3

Specification
– Microsoft* contributed additional capabilities for UEFI 2.3.1

Specification
 Append support for the authenticated variables
 Timestamp-based authenticated variable for roll-back protection
 Authenticode specification for use in UEFI
 UEFI Secure Boot support in Windows* 8

 UEFI Security Enabling is an Industry Effort

8

UEFI Secure Boot:
Enforcing Boot Policy
• The concept of UEFI

secure boot is to have
each component in the
chain be validated
and authorized
against a given policy
before allowing it to
execute

• UEFI secure boot
policy implementations
can range from digital
signatures to
preloaded hash
values…

Hardware
(stores policy)

Firmware

Middleware

Application
Software

validate

transfer
control

OS

OS Loader

UEFI scope
ends at OS
loader
launch

9

Securing the Stack from Bare Metal
• UEFI 2.3.1 security enhancements specifically

address the “secure boot” issue
• Securing the firmware itself further strengthens the

UEFI Secure Boot concept
– How is the firmware update protected?
– How is the firmware put into “admin mode”?

• NIST has created BIOS Protection Guidelines
– Secure Flash* update requirements
– Maintain firmware core root of trust

• UEFI 2.3.1 contains the framework to develop secure
Flash update

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

10

Agenda Item 1
Platform Hardening Practices

Qin Long
Software Architect, Intel Corporation

11

Design in Security From the Start
• Practice defense in depth

– Use several protection layers when designing and
implementing security mechanisms

• Do not rely on security by obscurity
• Fail intelligently, Fail Safe and Fail Secure

– Don’t provide hints to hackers (e.g., by disclosing
information on failure)

– Log errors and failures for auditing

• Check all return values
• Keep security critical code short

and simple
Hardening Hardware Platform

Foundational Components

12

Development Practices – Code Review
• Avoid unsafe calls (e.g., gets() equivalent)
• ASSERTs that should be error checking
• Check for valid input and reject everything else
• Perform sanity checks and bound checks – Check

Type, Length, Range, Format
• Validate as much and as deep as possible to prevent

unintended errors if code is changed; balance
against coding time/performance

• Be careful of boundary conditions (e.g., off-by-one
errors, array indices) and conditionals (e.g., reverse
logic)

• Don’t implement your own crypto algorithms or
protocols

13

Defensive Coding – Adding Robustness
• Validate input before using

– Network packet
– On-disk data structures/GPT
– UEFI Variables
– Device paths

• Storing secrets
– Avoid if possible
– Clear buffers to zero when done

• Key management
– Access control storage to PI elements. SMM based authenticated

variable driver in Intel® UDK2010.
• Fuzz testing

– SCTs (Self-Certification Tests) – positive testing “Does it work with
expected input”?

– Fuzzing is negative testing “What happens with unexpected
input?”

It’s not just functional verification

Intel® UEFI Development Kit 2010 (Intel® UDK2010)

14

Example of Safe Versus Unsafe Code
Example: Validate all input

 PartEntry = AllocatePool (PrimaryHeader->NumberOfPartitionEntries
 * sizeof (EFI_PARTITION_ENTRY));

 Status = DiskIo->ReadDisk (
 DiskIo,
 MediaId,
 MultU64x32(PrimaryHeader->PartitionEntryLBA, BlockSize),
 PrimaryHeader->NumberOfPartitionEntries * (PrimaryHeader->SizeOfPartitionEntry),
 PartEntry
);

Problem:
• The memory is allocated with
• However, ReadDisk block is with
• Buffer overflow occurs when the code reads a GPT with

Fix:
 PartEntry = AllocatePool (PrimaryHeader->NumberOfPartitionEntries

 * PrimaryHeader->SizeOfPartitionEntry);

Rationale for Input Validation
UDK2010 example:
http://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2/MdeModulePkg/Universal/Disk/Part
itionDxe/Gpt.c

A

A

B

B

C

C

http://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2/MdeModulePkg/Universal/Disk/PartitionDxe/Gpt.c
http://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2/MdeModulePkg/Universal/Disk/PartitionDxe/Gpt.c

15

Erase flash part
Overwrite flash
part

Erase op ROM
Overwrite op ROM

Network attacks

Spoof UEFI
application

System BIOS
-PEI recovery
-SMM,UEFI Core
-PK, KEK, CRTM

Option ROMs
UEFI drivers

Network Boot
IPv6 for the cloud

Pre-OS UEFI
application
OS Boot loader,
McAfee*

Endpoint Encryption

SP800
-147
Capsules

UEFI
2.3.1c

ROM Swap
Bit rot

BIOS Flash
Hardware
protection

Intel®
Silicon

Technologies – Putting it Together
TC

G
 M

ea
su

re
m

en
ts

 in
to

 P
C
R
s

0.
.7

Reset Threats Assets

Different colors for different vendors

16

Agenda Item 1
McAfee* Endpoint Encryption
& Secure Boot

Jie Shen
Senior Security Consultant, McAfee Inc.

17

Product Overview
• McAfee* endpoint encryption is a Full Disk Encryption product

– Provides “data at rest” protection

– Operating system data and user data is encrypted at the
sector level

• Strong encryption algorithms protect data
– Various methods of encrypting data are available
 Software based AES256 CBC (Cipher Block Chaining)
 Hardware accelerated AES256 CBC using AES-NI instructions
 Self encrypting disks

18

What is Full Disk Encryption?

• Encrypts data at the sector level
– The product has no knowledge of directories or files
– The encryption is completely transparent to the file system
– A disk can be partially encrypted and still operate normally;

this allows the system to be encrypted online

19

Encrypted Disk Unlock
• Encrypted disk data cannot be accessed until a user

authenticates and the encryption key is obtained
• Operating system kernel and critical files lie within

the encrypted data on disk
• A “Pre-Boot Application” (PBA) is required to

authenticate and unlock the disk

• User authenticates using token;
password, smartcard, recovery process,
etc.

• Once authenticated, the token releases
the disk encryption key

• The disk encryption key is used to gain
access to the encrypted data on disk

20

The McAfee* Endpoint Encryption PBA

• A UEFI application
− Started by the UEFI Boot Manager before the Windows*

bootloader
− Uses standard UEFI protocols for GUI implementation

(Graphics Output Protocol, Simple Pointer Protocol, etc.)
− Supports USB smartcard readers and tokens using standard

USB protocol

PLATFORM HARDWARE

 PLATFORM SPECIFIC FIRMWARE

 UEFI BOOT SERVICES UEFI
RUNTIME
SERVICES

UEFI OS LOADER

M
em

ory

Tim
er Driver Driver

UEFI/PI

Drivers

Boot
Devices

Protocols +
Handlers

OPERATING SYSTEM

UEFI API

System
ROM (SPI)

Option
ROM

Option
ROM

Option
ROM

UEFI
Drivers

UEFI OS
Loader

UEFI SYSTEM
PARTITION

OS PARTITION

UEFI
Drivers

21

GPT Disks: What’s Encrypted?
PMBR

GPT Header

EFI System Partition

OS Recovery Partition

OS Partition

Data

Shadow Partition Table

Shadow GPT Header

Partition Table

Endpoint Encryption
Data Partition

• Protective MBR, GPT Headers and Partition Tables
cannot be encrypted
− The data in these regions is required before the

disk is unlocked
− The disk would not be recognised as a valid GPT

disk and the system would be unable to boot

• EFI System Partition cannot be encrypted
− Contains the executable McAfee* Endpoint

Encryption preboot application image that is run by
the UEFI Boot Manager

− Also contains the Block I/O driver that performs
the sector level encryption/decryption when
authenticated

• Endpoint Encryption Data Partition cannot be encrypted
− Contains themes and localisation data for PBA
− Contains database of users and token data
− All data is required by the PBA prior to the disk

being unlocked

22

The Boot Process
UEFI Boot
Manager

Endpoint
Encryption

PBA

Windows
Bootloader

Encryption
Block I/O

Filter

Start

Disk Key

Read

Read

Read

UEFI
Boot
Services

ExitBootServices()

Windows
Kernel
Startup

Logon
Screen

Desktop/
Windows 8

Encryption
Disk Filter

Driver

Load

Start

Write

Read
Windows*

23

Secure Boot Provides Benefits to
Endpoint Encryption

• Without Secure Boot, the PBA is vulnerable to
malware attacks; keyloggers, denial of service

• Tamper-resistant PBA provides platform for
checking integrity of configuration files – signed
policies

Maintain the Chain of Trust!

24

Malware Threat: Keylogger

BS->LocateHandleBuffer(ByProtocol, &simple_text_input_ex_protocol_guid, NULL, &num_handles,

 &handles);

for (i = 0; i < num_handles; ++i) {

 BS->OpenProtocol(handles[i], &simple_text_input_ex_protocol_guid, &st, ImageHandle,

 NULL, EFI_OPEN_PROTOCOL_GET_PROTOCOL);

 hooked_protocols[i].st = st;

 hooked_protocols[i].orig_read_key_ex = st->ReadKeyStrokeEx;

 st->ReadKeyStrokeEx = keylogger_read_keystroke_ex;

}

 // Now chain load the original bootcode “EpeBoot.efi”

A

B

C

D

• All devices supporting EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
are enumerated representing keyboards and input devices at

• A pointer to each protocol is obtained at
• The function pointer that is used to obtain keystrokes is replaced

with a function that logs the keystrokes and chains to the original
at

• The keylogger application loads and executes the original
subverted UEFI application at

A
B

C

D

25

Malware Threat: Keylogger Installation
• Original, uncompromised boot:

• Without Secure Boot, installation of the keylogger is simple:

• Following a system reboot:

– Without Secure Boot the keylogger is allowed to run
– Endpoint Encryption PBA will execute but all keystrokes will be logged

to disk

C:\> mountvol /s z:
C:\> copy z:\EFI\McAfee\EpeBoot.efi z:\EFI\McAfee\EpeOrig.efi
C:\> copy f:\keylogger.efi z:\EFI\McAfee\Epe\EpeBoot.efi

UEFI Boot Manager EpeBoot.efi OS Bootloader

UEFI Boot Manager EpeBoot.efi
(Keylogger)

EpeOrig.efi (Original
EE preboot app) OS Bootloader

26

Malware Threat: Keylogger Installation
• Original, uncompromised boot:

• Without Secure Boot, installation of the keylogger is simple:

• Following a system reboot:

– Without Secure Boot the keylogger is allowed to run
– Endpoint Encryption PBA will execute but all keystrokes will be logged

to disk

C:\> mountvol /s z:
C:\> copy z:\EFI\McAfee\EpeBoot.efi z:\EFI\McAfee\EpeOrig.efi
C:\> copy f:\keylogger.efi z:\EFI\McAfee\Epe\EpeBoot.efi

UEFI Boot Manager EpeBoot.efi OS Bootloader

UEFI Boot Manager EpeBoot.efi
(Keylogger)

EpeOrig.efi (Original
EE preboot app) OS Bootloader

With Secure Boot, execution of the keylogger is prevented

27

What Can go Wrong?

• Even with Secure Boot the chain of trust can be
broken if care is not taken

UEFI Boot
Manager

Endpoint
Encryption

PBA

Windows
Bootloader

Encryption
Block I/O

Filter

Load

Start

Load

Process

• Secure Boot ensures the
Endpoint Encryption PBA
and Windows* Bootloader
are authentic

• PBA loads and executes
Block I/O filter driver

• PBA loads and processes
configuration and data
files

• Careless coding may
provide an exploitable
bug to malware

28

Chain of Trust: Loadable Modules
• The Endpoint Encryption UEFI application allows for

plugin modules
– Used for adding support for USB smartcard readers

• This poses a risk to the chain of trust
– It is the responsibility of the Endpoint Encryption UEFI

application to ensure untrusted code cannot be executed

• The problem is easily solved:
– Loadable modules are built as UEFI drivers
– The modules are loaded using the Boot Services

“LoadImage()” function
– If the loadable module is not trusted by the platform,

“LoadImage()” returns EFI_SECURITY_VIOLATION
– The chain of trust is maintained!

29

Chain of Trust: Data Files
• Why are data files a threat to the Chain of Trust?

– The McAfee* Endpoint Encryption PBA uses many
configuration files

– Malware may maliciously modify configuration files to
attempt to crash the PBA

– Modified configuration files can be engineered to execute
malicious code
 Common exploits overflow stack variables to modify function

return address to jump to unauthorised code
 The chain of trust is broken!

• How can this be prevented?
– All buffers that are populated from disk are carefully

checked to prevent overflow
– Data file signing can be used to verify authenticity of files

30

Data File Threat
 struct USER_DATA {
 char username[MAX_USERNAME_LENGTH + 1];
 long hash_length;
 char password_hash[MAX_PASSWORD_HASH_LENGTH];
 }
 int check_password_hash(USER_DATA* user_data, char* hash) {
 char hash_copy[MAX_PASSWORD_HASH];
 // Take a copy of the hash so we can modify the buffer
 // !! No check to ensure the hash length is valid !!
 memcpy(hash_copy, user_data->password_hash, user_data->hash_length);
 // Perform some calculation on the copied buffer
 …
 return success;
}

A

B

C

D

• Structure that mimics user file on disk is defined at
• Fixed length buffer assigned on stack at
• Memory copied from disk buffer to stack without validating

input at . Stack has been compromised.
• Return address from function jumps to malicious code

A
B

C
D

31

EEPC
Configuration

Example: Malicious Data

User
Files

User File
Containing
Malware

Endpoint
Encryption

PBA

check_password_hash()

memcpy(hash_copy, …)

return

Authenticate

Frame 1

Frame 2

Return Address

RBP

hash_copy

Malicious Code

Trampoline

Malicious Code or
Data

Normal Stack Hijacked
Stack

Unauthorized
Code

• Malicious data can be used to exploit
poorly written code

Validate all configuration and input!

32

Summary

• Platform security is maintained by a combination of
hardware and software using many technologies and
specifications

• UEFI Secure Boot is a vital part of the chain that
keeps the platform protected

• Malware infiltration during the boot process is
prevented by the Chain of Trust

• McAfee* Endpoint Encryption adds data security to
the hardened security provided by the Secure Boot
process

• Precautions need to be taken when writing software
to prevent the Chain of Trust from being breached

33

Get More Information
• Intel UEFI Community - http://intel.com/udk
• UEFI Forum Learning Center

– http://www.uefi.org/learning_center/

• Use the TianoCore edk2-devel mailing list for
support from other UEFI developers

• Read the “A Tour Beyond BIOS into UEFI Secure
Boot” whitepaper at tianocore.org

http://intel.com/udk
http://www.uefi.org/learning_center/
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Mailing_Lists
http://sourceforge.net/projects/edk2/files/General%20Documentation/A_Tour_Beyond_BIOS_into_UEFI_Secure_Boot_White_Paper.pdf/download
http://sourceforge.net/projects/edk2/files/General%20Documentation/A_Tour_Beyond_BIOS_into_UEFI_Secure_Boot_White_Paper.pdf/download
http://tianocore.org/

34

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
• A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in

personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND
THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES
AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL
OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF
ITS PARTS.

• Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

• The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

• Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel
representative to obtain Intel's current plan of record product roadmaps.

• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. Go to: http://www.intel.com/products/processor_number.

• Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
• Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be

obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm
• Intel, Sponsors of Tomorrow and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

• *Other names and brands may be claimed as the property of others.
• Copyright ©2013 Intel Corporation.

http://www.intel.com/design/literature.htm

35

• Software Source Code Disclaimer: Any software source code reprinted in this document is furnished under a software
license and may only be used or copied in accordance with the terms of that license.

 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Legal Disclaimer

36

Risk Factors
The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the
future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,”
“intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking
statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking
statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors
could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the
following to be the important factors that could cause actual results to differ materially from the company’s expectations. Demand
could be different from Intel's expectations due to factors including changes in business and economic conditions; customer acceptance
of Intel’s and competitors’ products; supply constraints and other disruptions affecting customers; changes in customer order patterns
including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial
conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could
negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by
a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult
to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and
market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing
programs and pricing pressures and Intel’s response to such actions; and Intel’s ability to respond quickly to technological
developments and to incorporate new features into its products. The gross margin percentage could vary significantly from
expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying
products for sale; changes in revenue levels; segment product mix; the timing and execution of the manufacturing ramp and
associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials
or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and
intangible assets. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in
countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters,
infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and
compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's
products and the level of revenue and profits. Intel’s results could be affected by the timing of closing of acquisitions and divestitures.
Intel’s current chief executive officer plans to retire in May 2013 and the Board of Directors is working to choose a successor. The
succession and transition process may have a direct and/or indirect effect on the business and operations of the company. In
connection with the appointment of the new CEO, the company will seek to retain our executive management team (some of whom are
being considered for the CEO position), and keep employees focused on achieving the company’s strategic goals and objectives. Intel's
results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and
by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as
the litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an
injunction prohibiting Intel from manufacturing or selling one or more products, precluding particular business practices, impacting
Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed
discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the company’s most
recent Form 10-Q, report on Form 10-K and earnings release.
Rev. 1/17/13

	Build Safety from Bare Metal�- Practices on Hardening and Harnessing the Secure Platform
	Agenda
	Slide Number 3
	Latest Updates from UEFI Forum
	Real World!
	Slide Number 6
	UEFI Security – Motivation & History
	UEFI Secure Boot: Enforcing Boot Policy
	Securing the Stack from Bare Metal
	Slide Number 10
	Design in Security From the Start
	Development Practices – Code Review
	Defensive Coding – Adding Robustness
	Example of Safe Versus Unsafe Code
	Technologies – Putting it Together
	Slide Number 16
	Product Overview
	What is Full Disk Encryption?
	Encrypted Disk Unlock
	The McAfee* Endpoint Encryption PBA
	GPT Disks: What’s Encrypted?
	The Boot Process
	Secure Boot Provides Benefits to Endpoint Encryption
	Malware Threat: Keylogger
	Malware Threat: Keylogger Installation
	Malware Threat: Keylogger Installation
	What Can go Wrong?
	Chain of Trust: Loadable Modules
	Chain of Trust: Data Files
	Data File Threat
	Example: Malicious Data
	Summary
	Get More Information
	Legal Disclaimer
	Legal Disclaimer
	Risk Factors

