

Intel® Architecture Code Analyzer

User's Guide

Copyright © 2009-2017 Intel Corporation

All Rights Reserved

Document Number: 321356-001US

Revision: 3.0

World Wide Web: http://www.intel.com

Document Number: 321356-001US

http://www.intel.com/

Introduction

Intel® Architecture Code Analyzer User Guide 2

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY

ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN

INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL

DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury

or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL

INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND

EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY

OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN,

MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence

or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall

have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject

to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate

from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies

of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by

calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

This document contains information on products in the design phase of development.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations

and functions. Any change to any of those factors may cause the results to vary. You should consult other information and

performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD, Flexpipe, i960, Intel, the Intel

logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel

NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo,

Intel StrataFlash, Intel vPro, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru soundmark, Itanium, Itanium Inside, MCS,

MMX, Moblin, Pentium, Pentium Inside, Puma, skoool, the skoool logo, SMARTi, Sound Mark, Stay With It, The Creators Project, The

Journey Inside, Thunderbolt, Ultrabook, vPro Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are trademarks of

Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 2009-2017, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Architecture Code Analyzer User Guide 3

Introduction

Contents

1 Introduction .. 4

1.1 Intel® Architecture Code Analyzer Accuracy ... 4

1.2 Processor Support .. 4

1.3 Platform Support ... 4

2 Analysis .. 5

2.1 Throughput Analysis .. 5

2.2 Trace ... 7

2.3 Analysis Report Notes ... 8

2.3.1 Unbound Instructions .. 8

2.3.2 Combining 256-bit Intel® AVX and Legacy Intel® SSE ... 8

2.3.3 Unsupported Instructions .. 8

2.3.4 Bubbles in the execution of the front end .. 8

2.3.5 VDIV / VSQRT Latency ... 8

3 Using Intel® Architecture Code Analyzer ... 9

3.1 Building Your Binary ... 9

3.2 Command Line Options .. 10

3.3 Analysis Errors .. 10

4 Examples ... 11

4.1 Throughput Analysis – Unrolling .. 11

4.1.1 Initial Code ... 11

4.1.2 Optimization .. 12

5 Release Contents ... 14

5.1 Linux* OS ... 14

5.2 Mac OS X* ... 14

5.3 Windows* OS .. 14

Intel® Architecture Code Analyzer User Guide 4

Introduction

1 Introduction

Intel® Architecture Code Analyzer helps you statically analyze the throughput of

instruction sequences (kernels) on Intel® microarchitectures.

For a given binary, Intel Architecture Code Analyzer:

 Identifies the binding of the kernel instructions to the processor ports under ideal front-

end, out-of-order engine and memory hierarchy conditions.

 Performs static analysis of the kernel throughput and reports its cycle count.

1.1 Intel® Architecture Code Analyzer Accuracy

Intel Architecture Code Analyzer enables you to do a first order estimate of the

relative performance of sections of code on different microarchitectures. It does not

provide absolute performance numbers.

The performance data reported by the tool may significantly deviate from actual

performance observed on an Intel® processor. You can achieve the most accurate

throughput measurements by executing the analyzed code on the processor itself. The

Intel® Architecture Code Analyzer complements such measured data with information on

port binding, bottlenecks, and critical paths.

1.2 Processor Support

Intel Architecture Code Analyzer supports analysis for 4th to 6th generation Intel® Core™

processors, which correspond to Intel® microarchitectures codenamed Haswell (4th gen),

Broadwell (5th gen) and Skylake (6th gen), including Skylake Server.

1.3 Platform Support

Intel Architecture Code Analyzer is a command-line utility that can analyze a binary file

that contains code with special markers that delimit the analyzed code. The tool analyses

Intel® 64 bit code including Intel® Advanced Vector Extensions (Intel® AVX), AVX2 and

AVX-512 instructions.

Intel Architecture Code Analyzer is available on Windows*, Linux* and Mac OS X*

operating systems (64-bit editions).

NOTE: Intel® Architecture Code Analyzer has been validated on 64-bit SUSE* 11, Mac OS

X* 10.12.1 and Microsoft* Windows 8.1 64-bit. It should work on other versions of

Linux*, Mac OS X* and Microsoft* Windows operating systems.

Intel® Architecture Code Analyzer User Guide 5

Analysis

2 Analysis

2.1 Throughput Analysis

Throughput Analysis is used to analyze the throughput and bottlenecks of a loop body; it

treats the contents of the analyzed block as an infinite loop, including considering inter-

iteration dependencies between instructions within the analyzed block. The Throughput

Analysis report provides the following information:

 Throughput of the whole analyzed block, counted in cycles. The block throughput

is calculated as the maximum between:

o Throughput of the processor’s ports
o Maximum front-end throughput (4 micro-ops per cycle)
o Divider unit throughput

 Bottleneck source that limited the throughput: front-end, port number, divider unit,

or long dependency chains.

 Total number of cycles each processor port was bound by micro-ops.

The detailed section of the throughput analysis report contains one line for each instruction

in the analyzed block. Each line contains:

 Number of the instruction micro-ops.

 Average number of cycles per iteration that the instruction was bound to each
processor port. For most instructions this simply means the number of cycles the
instruction was bound to each port. However, if a particular micro-op may execute
on more than one port, the average number of cycles per iteration may be a partial
cycle for each port because that micro-op may bind to a different port on each
iteration.

 Instruction disassembly in Intel® Software Developer’s Manual (MASM) style

Some ports have both a regular pipe and a secondary pipe. These ports are separated by a

hyphen, and look like two separate ports in the detailed report. Specifically:

 Port 0 has the Divider pipe split from it. In the first cycle they are both busy, then
port 0 is available for the next micro-op and the Divider pipe is kept busy for the
duration of the divide operation.

 Load ports 2 and 3 have an Address Generation Unit (AGU) split from them.

Following is an example Throughput Analysis report:

Intel® Architecture Code Analyzer User Guide 6

Analysis

Throughput Analysis Report

Block Throughput: 5.00 Cycles Throughput Bottleneck: Dependency chains

Loop Count: 23

Port Binding In Cycles Per Iteration:

--

| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |

--

| Cycles | 2.5 0.0 | 2.5 | 2.0 2.0 | 2.0 1.0 | 1.0 | 4.0 | 2.0 | 0.0 |

--

DV - Divider pipe (on port 0)

D - Data fetch pipe (on ports 2 and 3)

F - Macro Fusion with the previous instruction occurred

* - instruction micro-ops not bound to a port

^ - Micro Fusion occurred

- ESP Tracking sync uop was issued

@ - SSE instruction followed an AVX256/AVX512 instruction, dozens of cycles penalty is expected

X - instruction not supported, was not accounted in Analysis

| Num Of | Ports pressure in cycles | |

| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |

| 1 | | | 1.0 1.0 | | | | | | mov r10, qword ptr [rbp+0x170]

| 1 | | 1.0 | | | | | | | lea r9d, ptr [r8*4]

| 1 | | | | | | | 1.0 | | movsxd r9, r9d

| 1 | | | | | | | 1.0 | | inc r8d

| 1 | | | | 1.0 1.0 | | | | | mov r11, qword ptr [rbp+0x178]

| 1 | | | 1.0 1.0 | | | | | | vmovups xmm3, xmmword ptr [r10+r9*4]

| 1 | | | | | | 1.0 | | | vpslldq xmm2, xmm3, 0x4

| 1 | | | | | | 1.0 | | | vpslldq xmm4, xmm3, 0x8

| 1 | 1.0 | | | | | | | | vaddps xmm6, xmm2, xmm3

| 1 | | | | | | 1.0 | | | vpslldq xmm5, xmm3, 0xc

| 1 | 0.5 | 0.5 | | | | | | | vaddps xmm7, xmm4, xmm5

| 1 | 0.5 | 0.5 | | | | | | | vaddps xmm8, xmm6, xmm7

| 1 | 0.5 | 0.5 | | | | | | | vaddps xmm9, xmm8, xmm0

| 1 | | | | | | 1.0 | | | vshufps xmm0, xmm9, xmm9, 0xff

| 2 | | | | 1.0 | 1.0 | | | | vmovups xmmword ptr [r11+r9*4], xmm9

| 1* | | | | | | | | | cmp r8d, esi

| 0*F | | | | | | | | | jl 0xffffffffffffffb0

Total Num Of Uops: 17

Intel® Architecture Code Analyzer User Guide 7

Using Intel® Architecture Code Analyzer

2.2 Trace

To generate a trace use ‘–trace <path>’ option to generate a trace file in
<path>.

Traces include in-depth information about different operation stages inside
the processor. A trace can be used to identify bottlenecks and pressure
points.

Above is an example of a trace output.

The kernel instructions are modeled, in order, from top to bottom while the processor’s cycles run from
left to right. The ‘it’ column shows the iteration count of the entire kernel, the ‘in’ column shows the
instruction count within the kernel and the ‘Disassembly’ column shows the instruction’s disassembly,
along with the micro-architectural instruction fragment information. By default the first 150 cycles of

the modeled execution are displayed.

Each instruction is represented by at most 4 instruction-fragments (OP, STORE DATA, STORE
ADDRESS,LOAD). The trace displays the micro-architectural stage of each fragment inside the
processor at any given cycle from allocation to retire and even post retire. If two stages happen at the
same cycle the most important one of is shown. Specifically when Alloc & sready stages happen at the

same time the sready stage is shown.

The stages and possible states are:
[A] – Allocated
[s] – Sources ready
[c] – Port conflict
[d] – Dispatched for execution

[e] – Execute
[w] – Writeback
[R] – Retired
[p] – Post Retire
[-] – pending
[_] – Stalled due to unavailable resources

it|in|Dissasembly :01234567890123456789012345678901234567890

 0| 0|mov r10, qword ptr [rbp+0x170] : | | |

 0| 0| TYPE_LOAD (1 uops) :s---deeeew----R-------p |

 0| 1|lea r9d, ptr [r8*4] : | | |

 0| 1| TYPE_OP (1 uops) :sdw-----------R-------p |

 0| 2|movsxd r9, r9d : | | |

 0| 2| TYPE_OP (1 uops) :A-dw----------R-------p |

 0| 3|inc r8d : | | |

 0| 3| TYPE_OP (1 uops) :sdw-----------R-------p |

 0| 4|mov r11, qword ptr [rbp+0x178] : | | |

 0| 4| TYPE_LOAD (1 uops) : s---deeeew----R-------p |

 0| 5|vmovups xmm3, xmmword ptr [r10+r9*4] : | | |

 0| 5| TYPE_LOAD (1 uops) : A-------deeeeew----R-------p |

 0| 6|vpslldq xmm2, xmm3, 0x4 : | | |

 0| 6| TYPE_OP (1 uops) : A-------------dw----R-------p|

 0| 7|vpslldq xmm4, xmm3, 0x8 : | | |

 0| 7| TYPE_OP (1 uops) : A-------------cdw----R-------p

 0| 8|vaddps xmm6, xmm2, xmm3 : | | |

 0| 8| TYPE_OP (1 uops) : A-------------deeew----R-------p

 0| 9|vpslldq xmm5, xmm3, 0xc : | | |

 0| 9| TYPE_OP (1 uops) : A------------ccdw------R-------p

Intel® Architecture Code Analyzer User Guide 8

Using Intel® Architecture Code Analyzer

2.3 Analysis Report Notes

2.3.1 Unbound Instructions

Some instructions do not require a processor functional unit to complete their execution.

For example, a xor eax, eax instruction does not require an execution port because the

register is directly set to 0. As a result, their micro-ops are not bound to any port.
Instructions that are not bound to a port are marked with a ‘*’ character next to their

number of micro-ops.

2.3.2 Combining 256-bit Intel® AVX and Legacy Intel® SSE
Transitioning between 256-bit Intel® AVX instructions and legacy Intel Streaming SIMD

Extensions (Intel® SSE) instructions will cause performance penalties. Intel® Architecture

Code Analyzer detects these transitions between 256-bit Intel® AVX and legacy Intel®

SSE within the analyzed block, and ignores the associated performance penalty in the

total throughput and total latency summary report. Instead, the summary report includes

two additional lines at the top indicating that such sequence(s) exist in the analyzed block,

and marks the first transition instruction with a ‘@’ character in the Num of Uops columns.

For more information on transitions between Intel® AVX and Intel® SSE, see Avoiding

AVX-SSE Transition Penalties.

2.3.3 Unsupported Instructions

Intel® Architecture Code Analyzer does not support a small subset of the Intel®
Architecture Instruction Set. When it reaches an unsupported instruction in the analyzed

block it ignores the instruction. It does not take the instruction into account in the port
binding analysis or in the throughput calculations.

In such cases, the summary report includes a line indicating that such instruction(s) exist

in the code, and marks the instruction with an ‘X’ character in all columns.

2.3.4 Bubbles in the execution of the front end
The Intel® Architecture Code Analyzer models some of the internal resources of the
microarchitecture front end. It may report “front end bubbles” if some or any of these
resources become a bottleneck.

2.3.5 VDIV / VSQRT Latency
For some values of their operands (e.g. zero or one) VDIV and VSQRT instructions can
produce results earlier than their specified latency. The Intel® Architecture Code
Analyzer does not model this behavior. As a result it could be more “pessimistic” for
kernels that use these instructions.

http://software.intel.com/en-us/articles/avoiding-avx-sse-transition-penalties/
http://software.intel.com/en-us/articles/avoiding-avx-sse-transition-penalties/

Intel® Architecture Code Analyzer User Guide 9

Using Intel® Architecture Code Analyzer

3 Using Intel® Architecture Code Analyzer

This section explains how to build your binary so that the Intel® Architecture Code

Analyzer can analyze it, and it lists the tool command-line options.

3.1 Building Your Binary

The file iacaMarks.h contains macros to denote the start (IACA_START) and end

(IACA_END) of the code section for the Intel® Architecture Code Analyzer to evaluate. The

Intel Architecture Code Analyzer is a static tool. It treats the analyzed code section as a

single consecutive block of instructions. It does not follow branch instructions, not even

unconditional branches.

When analyzing a loop construct, place the macros at the following locations:

while (condition)

{

IACA_START

<loop body>

}

IACA_END

This placement skips the loop initialization and includes the loop-end branch instruction.

These macros modify the rbx register in IA-64 code. As a result, the compiler saves this

register just before the macro and restores it immediately after the macro.

Once you insert the macros into your code, build your code into an executable file or an

object file.

For Microsoft* Visual C++ compiler, 64-bit version, use IACA_VC64_START and

IACA_VC64_END, instead.

NOTE: Input files generated with the Intel compiler option –Qipo are not supported.

Intel® Architecture Code Analyzer User Guide 10

Examples

3.2 Command Line Options

The following command runs the Intel® Architecture Code Analyzer:

iaca <options> <input file name>

<input file name> represents the name of the input file.

Available <options>:

-arch <type>

Architecture type.

These are the available types: HSW, BDW, SKL and

SKX.

-trace <file> Generate an IACA trace and output it to a given file.

-reduceout Output is reduced.

-v Print version and exit.

-trace-cycle-count Specify max cycle number to show in IACA trace

3.3 Analysis Errors

Should the analysis fail, the following error messages may appear:

Error message Possible Cause

COULD NOT OPEN FILE - <Error>

The supplied path for the input or output file was

incorrect, the input file is not readable or failed to

create the output file.

ILLEGAL INSTRUCTION - <Error num>
Code contains an illegal instruction or other xed

error occurred, xed error number is printed.

COULD NOT FIND START_MARKER

COULD NOT FIND END_MARKER

Code did not contain the proper marker(s). See

section 3.1 for more details.

Intel® Architecture Code Analyzer User Guide 11

Examples

4 Examples

This section provides examples of how to analyze and optimize code using Intel®

Architecture Code Analyzer.

4.1 Throughput Analysis – Unrolling

This example performs summation of array elements (only the loop code is analyzed).
The initial code and throughput analysis report for Skylake micro-architecture are shown
below.

4.1.1 Initial Code

Throughput Analysis Report

Block Throughput: 4.00 Cycles Throughput Bottleneck: Dependency chains

Loop Count: 50

Port Binding In Cycles Per Iteration:

--

| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |

--

| Cycles | 0.5 0.0 | 0.5 | 0.5 0.5 | 0.5 0.5 | 0.0 | 0.5 | 0.5 | 0.0 |

--

| Num Of | Ports pressure in cycles | |

| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |

| 1 | | | | | | 0.5 | 0.5 | | add rbx, 0x20

| 2^ | 0.5 | 0.5 | 0.5 0.5 | 0.5 0.5 | | | | | vaddps ymm0, ymm0, ymmword ptr [rbx]

| 1* | | | | | | | | | sub eax, 0x8

| 0*F | | | | | | | | | jnle 0xfffffffffffffff5

Total Num Of Uops: 4

Intel® Architecture Code Analyzer User Guide 12

Examples

4.1.2 Optimization

The Throughput Analysis Report shows that the total throughput (Block Throughput) is 4

cycles and so this is the throughput per iteration of the loop, and for each one of these

iteration one vaddps instruction is performed.

If we perform an unrolling of 8 operations per iteration for this loop we get the same

throughput but with a lot more work done, and this is due to the dependency between each

vaddps operation that we avoid.

Throughput Analysis Report

Block Throughput: 4.00 Cycles Throughput Bottleneck: Backend

Loop Count: 22

Port Binding In Cycles Per Iteration:

--

| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |

--

| Cycles | 4.0 0.0 | 4.0 | 4.0 4.0 | 4.0 4.0 | 0.0 | 0.5 | 0.5 | 0.0 |

--

| Num Of | Ports pressure in cycles | |

| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 |

| 1 | | | | | | 0.5 | 0.5 | | add rbx, 0x100

| 2^ | | 1.0 | 1.0 1.0 | | | | | | vaddps ymm0, ymm0, ymmword ptr [rbx]

| 2^ | 1.0 | | | 1.0 1.0 | | | | | vaddps ymm1, ymm1, ymmword ptr [rbx+0x20]

| 2^ | | 1.0 | 1.0 1.0 | | | | | | vaddps ymm2, ymm2, ymmword ptr [rbx+0x40]

| 2^ | 1.0 | | | 1.0 1.0 | | | | | vaddps ymm3, ymm3, ymmword ptr [rbx+0x60]

| 2^ | | 1.0 | 1.0 1.0 | | | | | | vaddps ymm4, ymm4, ymmword ptr [rbx+0x80]

| 2^ | 1.0 | | | 1.0 1.0 | | | | | vaddps ymm5, ymm5, ymmword ptr [rbx+0xa0]

| 2^ | | 1.0 | 1.0 1.0 | | | | | | vaddps ymm6, ymm6, ymmword ptr [rbx+0xc0]

| 2^ | 1.0 | | | 1.0 1.0 | | | | | vaddps ymm7, ymm7, ymmword ptr [rbx+0xe0]

| 1* | | | | | | | | | sub eax, 0x40

| 0*F | | | | | | | | | jnle 0xffffffffffffffc3

Total Num Of Uops: 18

Intel® Architecture Code Analyzer User Guide 13

Examples

The performance gain as seen in the IACA trace:

it|in|Dissasembly :012345678901234567890123456789012345

 0| 0|add rbx, 0x20 : | | |

 0| 0| TYPE_OP (1 uops) :sdw----R-------p | |

 0| 1|vaddps ymm0, ymm0, ymmword ptr [rbx] : | | |

 0| 1| TYPE_LOAD (1 uops) :A-s-deeeeeew----R-------p |

 0| 1| TYPE_OP (1 uops) :A----------deeew----R-------p |

 0| 2|sub eax, 0x8 : | | |

 0| 2| TYPE_OP (1 uops) :sdw-----------------R-------p |

 0| 3|jnle 0xfffffffffffffff5 : | | |

 0| 3| TYPE_OP (0 uops) :w-------------------R-------p |

 1| 0|add rbx, 0x20 : | | |

 1| 0| TYPE_OP (1 uops) :A-dw----------------R-------p |

 1| 1|vaddps ymm0, ymm0, ymmword ptr [rbx] : | | |

 1| 1| TYPE_LOAD (1 uops) : A-s-deeeeeew-------R-------p |

 1| 1| TYPE_OP (1 uops) : A-------------deeew----R-------p

 1| 2|sub eax, 0x8 : | | |

 1| 2| TYPE_OP (1 uops) : Aw---------------------R-------p

 1| 3|jnle 0xfffffffffffffff5 : | | |

 1| 3| TYPE_OP (0 uops) : w----------------------R-------p

 it|in|Dissasembly :01234567890123456789012345678901234

 0| 0|add rbx, 0x100 : | | |

 0| 0| TYPE_OP (1 uops) :sdw----R-------p | |

 0| 1|vaddps ymm0, ymm0, ymmword ptr [rbx] : | | |

 0| 1| TYPE_LOAD (1 uops) :A-s-deeeeeew----R-------p |

 0| 1| TYPE_OP (1 uops) :A----------deeew----R-------p |

 0| 2|vaddps ymm1, ymm1, ymmword ptr [rbx+0x20] : | | |

 0| 2| TYPE_LOAD (1 uops) :A-s-deeeeeew--------R-------p |

 0| 2| TYPE_OP (1 uops) :A----------deeew----R-------p |

 0| 3|vaddps ymm2, ymm2, ymmword ptr [rbx+0x40] : | | |

 0| 3| TYPE_LOAD (1 uops) :A-s-cdeeeeeew-------R-------p |

 0| 3| TYPE_OP (1 uops) :A-----------deeew----R-------p|

 0| 4|vaddps ymm3, ymm3, ymmword ptr [rbx+0x60] : | | |

 0| 4| TYPE_LOAD (1 uops) : As--deeeeeew--------R-------p|

 0| 4| TYPE_OP (1 uops) : A----------deeew----R-------p|

 0| 5|vaddps ymm4, ymm4, ymmword ptr [rbx+0x80] : | | |

 0| 5| TYPE_LOAD (1 uops) : As--cdeeeeeew-------R-------p|

 0| 5| TYPE_OP (1 uops) : A-----------deeew----R-------p

As seen in the trace output, unrolling the loop gives a significant performance gain.

 The vaddps operations seen in the top trace output are dependent due to ymm0, and so each
 Operation is performed only after the previous operation reached writeback stage.
 Unrolling the loop makes use of more registers and so parallel executions are possible.

Intel® Architecture Code Analyzer User Guide 14

Release Contents

5 Release Contents

This section lists the files required for running on Linux*, and Mac OS X* operating

systems to analyze Intel® 64 code. Each section also explains which environmental

variables to modify.

5.1 Linux* OS

Include iacaMarks.h in your code.

Filename Description

iaca Intel Architecture Code Analyzer command-line tool

iacaMarks.h Header file for the start/end markers

5.2 Mac OS X*

Include iacaMarks.h in your code.

Filename Description

iaca Intel Architecture Code Analyzer command-line tool

iacaMarks.h Header file for the start/end markers

5.3 Windows* OS

Include iacaMarks.h in your code.

Filename Description

iaca Intel Architecture Code Analyzer command-line tool

iacaMarks.h Header file for the start/end markers

