Intended Audience: Software
Developers

Interested in performance optimizing your application
= Don't need to be a performance expert
= But should be an expertin the application!

Working on a platform with a 6th generation Intel® Core™
processor

Using Intel® VTune™ Amplifier XE performance analyzer

= The performance information here applies to other tools as well but is
focused on VTune Amplifier XE




How to Use this Presentation

Read through the slides once, then again while collecting
data

Remember performance analysis is a process that may take
several iterations
Software Optimization should begin after you have:

= Utilized any compiler optimization options (/02, /QxAVX2, etc)
= Chosen an appropriate workload

= Measured baseline performance
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Agenda

= Intel® VTune™ Amplifier XE

* The Software Optimization Cycle
= Find Hotspots
= Methods for Determining Efficiency
= | ocating the Primary Bottleneck
= Tuning for Common Architectural Causes of Inefficiency

= Additional Tuning Recommendations




6th Generation Intel® Core™ Processor

Integrated Graphics

This image represents a general CPU layout and is intended to help illustrate the
concepts described in this guide. It is not designed to be a definitive
representation of the microarchitecture.

Intel® microarchitecture codename Skylake CPUs -
http://ark.intel.com/products/codename/37572/Skylake



Intel® VTune™ Amplifier XE

VTune Amplifier XE features:
= Multiple Collection Types

= Hotspots (statistical call tree) |~ "=

Wat Time by Unizatone *E W spn
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= Thread Concurrency L —— B=> 1
) ) & Semaphare b1 301, 0 25
= Locks and Waits Analysis e L ——

Selected 1 rowlsh 194 57 108

= Event-based Sampling

= Timeline View Integrated
into all Analysis Types

= Source/Assembly Viewing

= Compatible with C/C++,
Fortran, Java, Assembly,
.NET

= Visual Studio Integration,
Command-line, or
Standalone interface for Windows* or Linux*

Most screenshots in this presentation were taken from Intel® VTune™ Amplifier
XE 2016 Update 2.
Screenshots from different versions of the tool may have minor differences.



Pre-Configured Profiles in Amplifier XE

™ Choose Target and Analysis Type

The General Exploration profile should be used for a top-level
analysis of potential issues on the Intel microarchitecture code
name Skylake family. It is the subject of this guide.

“Anatyze memory bandwedth

Analyze user tasks

Events CPU: &th ges inteiR) Core(TM) ay

NOTE: For analysis purposes, intel VTune Ampidier XE 2016 may adjunt the Sample After values in the table below by &
ultpher. The multiplies depends on the value of pron pe get configuration

vent Name Sample After Precise.

) Mepredcted mago
2000003 Reference cydes w

All the events required are pre-configured — no
research needed! Simply click Start to run the
analysis.

The logic for identifying issues on Intel Microarchitecture Codename Skylake is
embedded into the interface. All the formulas and metrics used are the same as
the ones given in this guide. You no longer have to apply formulas and rules to
the data yourself to figure out what it means - using this guide and the interface
tuning features, you can easily pinpoint problems and possible solutions.

The formulas and metrics are only applied to the General Exploration profile, and
the General Exploration viewpoint (which is automatic). For all other profiles, it
will just show the raw data.



Enhanced General Exploration View

The enhanced view is present when running the
General Exploration profile with the General
Exploration viewpoint selected (the default).

Instructions | CPI | Front-End Bad Back-End
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All collected data is presented in hierarchical
format (see next slide) helpful metrics
already calculated (see issue slides).

[Phread (Ti0: 11216)
[Phread (TiD: 11200)




Enhanced General Exploration View

™ General Exploration

g Hierarchical data display corresponds to how available
@ t t execution slots in each core’s pipeline are utilized.

Grouping: | Function / Call Stack

Instructions = CPI | Front-End Bad Back-End
Retired Rate Bound Speculation Bound

Function / Call Stack Clockticks ¥ Retining

14,348,022,422/

12,672,019,008 SRAL

#sphere_intersect 9,618,014427  9,026,013,539 1.066 5.7%
[# grid_bounds_intersect 1,064,001,596 690,001,035 1.542 12.5%
®func@0x1002df7f Bad Speculation
# pos2grid
@ shader 212000318 190,000285 1.116 Sanch rr
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# _kmp_x86_pause 4, a4
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s o ones MY
Selected 1 row(s): | 14,948,022,422 12,672,019,008 1.180 7.01 143%

Expand a column to see a breakdown of issues
pertaining to its category of pipeline utilization:
Retiring, Bad Speculation, Back-end Bound, or Front-
end Bound Pipeline Slots
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Enhanced General Exploration View

# General Exploration - General Exploration Intel VTune

@ Analysis Target Analysis Type | | 81 ‘e Top-down Tree | | B8 Tasks and Frames

Grouping: [Function { Call Stack

Function { Call Stack. CPUCL... mmmzn‘ ﬂle Re
ANY )

#isphere_intersect 7,512,000,000 10,326,000,000 0.727 0.372 0.016

0.027 0.478 0.038 analyze_locks.exe sphere_ir

#grid_bounds_intersect | 1,196,000,000 862,000,000 1387 0.192 0.100 .000 0,607 0.088 analyze_locks.exe grid_bour
# GdipCreateSoldFil | 652,000,000 564,000,000 1.156 0.276 0.000 0628 0.073 gdiplus.di GdpCreal
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#[rdpdd.d) | 226,000,000 476,000, 475 0.431 0531 0.0 0226 0.232 rdpdd.di [rdpdd.di
ishader 208,000,000 1.300 0.252 0.000 0.000\ 0.760 0.108 analyze_locks.exe shader(st
(T8 Scheduler Internals) 170,000,000 46, 369 0544 0.000 thb.di thb::inter

#Raypnt 0.664 0.392 0.015 analyze_locks.exe Raypnit(s!

Selected 1 row(s):
»

For a given hotspot, if a cell is
highlighted pink, it means the value for
that metric is over VTune Amplifier XE's
pre-determined threshold and should
be investigated.

Pre-computed metrics for each category of pipeline
utilization saves users analysis time.

Note that issue highlighting occurs under 2 conditions:

1. The value for the metric is over Intel VTune Amplifier XE’'s pre-determined
threshold

2. The associated function uses 5% or greater of the CPU clockticks sampled



Complexities of Performance
Measurement

Two features of the 5th generation Intel® Core™ processor family
have a significant effect on performance measurement:

= Intel® Hyper-Threading Technology
= Intel® Turbo Boost 2.0 Technology

With these features enabled, it is more complex to measure and
interpret performance data

= Most events are counted per thread, some events per core
= See VTune Amplifier XE Help for specific events

Some experts prefer to analyze performance with these features
disabled, then re-enable them once optimizations are complete

Both Intel® Hyper-Threading Technology and Intel® Turbo Boost 2.0 Technology
can be enabled or disabled through BIOS on most platforms.

Contact with the system vendor or manufacturer for specifics prior to making
changes. Incorrectly modifying BIOS settings from those supplied by the
manufacturer can result in rendering the system unusable and may void the
warranty.

Don’t forget to re-enable these features once you are through with the software
optimization process!



The “Software on Hardware” Tuning
Process
For each Hotspot

= Determine efficiency

= |f inefficient:
— Determine primary bottleneck
— Identify architectural reason for inefficiency
— Optimize the issue

Repeat




The “Software on Hardware” Tuning
Process

= Determine efficiency

= |f inefficient:
— Determine primary bottleneck
— Identify architectural reason for inefficiency
— Optimize the issue

Repeat




|dentify the Hotspots

What: Hotspots are where your application spends
the most time

Why: You should aim your optimization efforts
there!

= Why improve a function that only takes 2% of your application’s
runtime?

How: VTune Amplifier XE Basic Hotspots or
Advanced Hotspots analysis type

= Usually hotspots are defined in terms of the
CPU_CLK_UNHALTED.THREAD event(aka “clockticks”)

For this processor family, the CPU_CLK_UNHALTED.THREAD counter measures
unhalted clockticks on a per hardware thread basis. There is no per-core clocktick
counter, which has been available on some previous processors. The
CPU_CLK_UNHALTED.THREAD counter allows you to see where cycles are being
spent on each individual hardware thread.

There is also a CPU_CLK_UNHALTED.REF counter, which counts unhalted
clockticks per thread, at the reference frequency for the CPU. In other words, the
CPU_CLK_UNHALTED.REF counter should not increase or decrease as a result of
frequency changes due to Turbo Mode 2.0 or Speedstep Technology. This counter
can be useful for removing the variance introduced by Turbo Mode 2.0 or
Speedstep Technology when comparing multiple analyses.



The “Software on Hardware” Tuning
Process
For each Hotspot

= |f inefficient:
— Determine primary bottleneck
— Identify architectural reason for inefficiency
— Optimize the issue

Repeat




Efficiency Method 1: % Retiring Pipeline Slots

Why: Helps you understand how efficiently your app is using the
processors

How: General Exploration profile, Metric: Retiring

What NOW: ™ General Exploration General Exploratior

= For a given hotspot:

= |f 75% or more of

Function / Call Stack Clockticksw | Mtructions

pipeline slots are retiring, =
go to efficiency method 3,
. ¥ grid_intersect 14,948,022,422 12,672,019,008
code study 1 -to seeif 5 sphere_intersect 9618014427 9,026,013,539
. . ¢ grid_bounds_intersect 1,064,001,506 690,001,035
vectorization can boost  fmceooan
performance further Spochld e T
. i #tri_intersect
» Otherwise,see nextslide =_tmppuse
+ Raypnt 172,000,258 256,000,384
e S etected | rowlsk| 14,948,022,422 12672019008 1180 3% 70%

Formula:
(UOPS_RETIRED.RETIRE_SLOTS/ (4*CPU_CLK_UNHALTED.THREAD))

Thresholds: Investigate if -
% Retiring < 75

This metric is based on the fact that when operating at peak performance, the
pipeline on this CPU should be able to retire 4 micro-operations per clock cycle (or
“clocktick”). The formula looks at “slots” in the pipeline for each core, and sees if
the slots are filled, and if so, whether they contained a micro-op that retired.

More details on this methodology are available in the coming slides or in this
paper: http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-
top-down-characterization-of-microarchitectural-issues



http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues

Efficiency Method 1: % Retiring Pipeline Slots

What Now: For a hotspot with < 70% pipeline slots retiring,
consider the application type when determining efficiency. If the
hotspot is below the expected range below, it may be inefficient.

Expected Range of Pipeline Slots in this Category, for a
Hotspot in a Well-tuned:

Client/ Server/ Database/ High Performance
Desktop Distributed application Computing (HPC)
application application

20-50% 10-30% 30-70%

For more details see: http://software.intel.com/en-us/articles/how-to-tune-applications-
using-a-top-down-characterization-of-microarchitectural-issues

d



Efficiency Method 2: Changes in Cycles per
Instruction (CPI)

Why: Another measure of efficiency that can be useful when
comparing 2 sets of data

= Shows average time it takes one of your workload'’s instructions to
execute

How: General Exploration profile, Metric: CPl Rate

What Now: M General Exploration Ge

* CPI can vary widely Py
dependingon the
application and platform! nton /G lnstrucions

Clockticks»

= |f code size stays
constant, optimizations =~ ‘e EC R
should focus on ounds i 1064001596 630,001,035
reducing CPI

212000318 190,000,285

172000258 256,000,384

Selected 1 row(s) | 14,948,022.422 12,672.019,008

Formula:
CPU_CLK_UNHALTED.THREAD/INST_RETIRED.ANY

Threshold:

In the interface, CPI will be highlighted if > 1. This is a very general rule based
on the fact that some well tuned apps achieve CPIs of 1 or below. However,
many apps will naturally have a CPI of over 1 - it is very dependent on workload
and platform. It is best used as a comparison factor — know your app’s CPI and
see if over time it is moving upward (that is bad) or reducing (good!).

Note that CPI is a ratio! Cycles per instruction. So if the code size changes for a
binary, CPI will change. In general, if CPI reduces as a result of optimizations,
that is good, and if it increases, that is bad. However there are exceptions.
Some code can have a very low CPI but still be inefficient because more
instructions are executed than are needed. This problem is discussed using the
Code Examination method for determining efficiency.

Additionally, CPI can be affected if using Intel® Hyper-threading. In a serial
workload, or a workload with Intel® Hyper-threading disabled the theoretical best
CPI on a hardware thread is 0.25 because the core can allocate and retire 4
instructions per cycle. In a workload with Intel® Hyper-threading enabled which
utilizes both hardware threads effectively, the ideal CPI per-thread would be 0.5
instead of 0.25. This is because the hardware threads share allocation and



retirement resources on the core.

Note: Optimized code (e.g. with AVX instructions) may actually increase the CPI,
and increase stall % - but improve the performance. This is because a single
vector instruction will generally take more cycles than a single scalar instruction,
but it also often performs more work. For example, a vector instruction may take
twice as many cycles, but perform the work of four scalar instructions. In that
case, the average CPI will increase, but the application will still be running faster.

CPI is just a general efficiency metric — the real measure of efficiency is work
taking less time.



Efficiency Method 3: Code Examination

Why: Methods 1 and 2 measure how long it takes instructions to
execute. The other type of inefficiency is executing too many
instructions.

How: Use VTune Amplifier XE's capability as a source and
disassembly viewer

What Now:
= Failure to utilize
modern instructions |
results in larger code |
size

12

= See nextslides
for potential issues

RS e

This method involves looking at the disassembly to make sure the most efficient
instruction streams are generated. This can be complex and can require an
expert knowledge of the Intel instruction set and compiler technology. What we
have done is describe how to find 3 easy-to-detect code patterns and suggest
how they may be implemented more efficiently using new features of the CPU.



Efficiency Method 3, Code Study 1: Convert Legacy Floating
Point or Integer Code to Intel® Advanced Vector Extensions
(AVX and AVX2)

Why: Using SIMD instructions can greatly increase floating point
performance. For existing FP or Integer SSE code, converting to
AVX instructions has several advantages, including support for
wider vector data (up to 256-bit), 3- and 4-operand syntax that
allows NDS operations, and power savings.

How: Examine your assembly code for existing SSE instructions
(using xmm registers), MMX instructions (using mmx registers), or
for floating point instructions that are not packed (such as faddp,
fmul, or scalar SSE instructions like addss)

What Now:

=Intel Compiler /QxCORE-AVX2 (Windows*) or -xCORE-AVX2 (Linux*)
switches

=GCC: -march=core-avx2

=Optimize to AVX - See the Intel® 64 and |A-32 Architectures Optimization

Reference Manual, chapter 11 @

For more on vectorization in general: http://software.intel.com/en-
us/articles/vectorization-toolkit

SSE instructions will look like: addps xmm4, xmmb5.

+ addss is a s(calar) Intel® SSE instruction — packed SSE instructions such as
addps are a better choice



Efficiency Method 3, Code Study 2: Take Advantage of Fused
Multiply Add (FMA) Instructions

Why: FMA instructions in Intel microarchitecture code name
Haswell have the same latency as an FP Multiply. 2 new FMA
units provide 2x peak FLOPs/cycle of previous generation.

How: Examine your source code for operations of the format
r=(x*y)+z, r=(x*y)-z, r=-(x*y)+z, or r=-(x*y)-z. Then
look at the corresponding assembly to see if FMA instructions
are being used. FMA instruction names begin with VFM (as in
VFMADD132PD or VFMSUBADD132PD) or VFNM (as in

VFNMADD1 32PD)

What Now:

=Use Compiler switches to generate FMAs (you may need to specify a relaxed
floating point model)

=Intel Compiler: -fma or /Qfma with CORE-AVX2 or higher for option -
x or /Qx, or -march or /arch

=GCC: -xfma or -march=core-avx2

Note that FMA instructions perform a multiply, add, and round. A multiply
followed by an add would have 2 rounds (one after the multiply and one after the
add). Since the FMA eliminates the intermediate rounding operation, results may
be different when using FMAs as opposed to multiplies followed by adds. For
more information, see the Intel® 64 and IA-32 Architectures Software
Developer’'s Manual at
http://download.intel.com/products/processor/manual/325462.pdf.



http://download.intel.com/products/processor/manual/325462.pdf

The “Software on Hardware” Tuning
Process
For each Hotspot

= Determine efficiency
= |If inefficient:

— Identify architectural reason for inefficiency
— Optimize the issue

Repeat




Determine the Primary Bottleneck

If Methods 1 or 2 are used to determine code is inefficient, first
determine the primary bottleneck.

The Top-Down hierarchy implemented in General Exploration
classifies your application’s utilization of the CPU cores into 4
categories:

= Front-End Bound
= Back-End Bound

= Bad Speculation

= Retiring

For a hotspot that is inefficient, determining the primary bottleneck is the first
step. Optimizing code to fix issues outside the primary bottleneck category may
not boost performance - the biggest boost will come from resolving the biggest
bottleneck. Generally, if Retiring is the primary bottleneck, that is good. See
next slides.



Issue Classification

A Pipeline Slotis an abstract concept — it represents the hardware resources
needed to process one micro-operation

On this CPU, there are 4 pipeline slots available on each core, each cycle

Performance is classified according to what happened for each slot available to

the application or hotspot:
Uop Allocated?
Yes No

Uop ever Back-end
Retire? stalled?
Yes No No
- Bad Back-end Front-end
Retinng Speculation Bound Bound

Note the way that this methodology allows us to classify what percentage of all
pipeline slots end up in each category, for each cycle and for each core. It is
possible that for a given dataset, there may be a significant percentage of
pipeline slots in multiple categories that merit investigation. Start with the
category with the highest percentage of pipeline slots. Ideally a large percentage
of slots will fall into the “Retiring” category, but even then, it may be possible to
make your code more efficient.

For a complete description of this methodology, see http://software.intel.com/en-
us/articles/how-to-tune-applications-using-a-top-down-characterization-of-
microarchitectural-issues



http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues

Investigating the Bottleneck

Determine which category is the primary bottleneck, then

compare the fraction for that category to the chart below.

= |f the % for your hotspot is outside the range, investigate issues from that
category

i Expected Range of Pipeline Slots in this Category, for a
| Hotspot in a Well-tuned:

Client/ Server/ Database/ High Performance
Desktop Distributed Computing (HPC)
application application application
20-50% 10-30% 30-70%

20-40% 20-60% 20-40%
Front-End Bound j [ER[Z 10-25% 5-10%

Bad Speculation j B[l 5-10% 1-5%

Higher is Better
Lower is Better

Key:

The distribution of pipeline slots in these four categories is very useful for
developers. Although metrics based on events have been possible for many
years, before this characterization there was no approach for identifying which
possible performance issues were the most impactful. When performance metrics
are placed into this framework, a developer can see which issues need to be
tackled first.



The “Software on Hardware” Tuning
Process
For each Hotspot

= Determine efficiency
= If inefficient:

- Determineirimai bottleneck

Repeat

ﬂ



|dentifying Architectural Reasons for
Inefficiency: The Issue Slides

Issues are listed by category, and each category is explained.

For each potential issue, there are several important pieces of
information:
Why: Why you should be concerned about this potential problem.

How: Which profile and metric to use in the Amplifier XE interface. If the data
is highlighted, then it should be investigated.

What Now: Helps you Optimize the Issue. Gives suggestions for follow-up
investigations or optimizations to try.

Event Names and Metric Formulas are given in the Notes. These are not
included on the slide because they are already embedded in the Amplifier XE
logic and can be found by hovering over a metric column in the GUL. You only
need to use the pre-configured profiles and metrics pointed out in order to
know if you may have a problem.




Tuning for the Front-End Bound
Category

The Front-End of the pipeline
Fetches instructions
Decodes instructions into micro-operations
Delivers up to 4 micro-operations per cycle to the Back-End




Front-End Bound, Illustrated

Front-End

Retirement
Fetch &

Decode

Instrugtions, . Re-Order BL__
Predict ¥ kbbbl “Execute Results
Branches Instructions to Memory

Occurs when the Front-End cannot deliver micro-ops for all
4 pipeline slots — generally caused by delays in fetching
code or in decoding instructions

Front-End issues are caused by delays in fetching code (due to caching or ITLB
issues) or in decoding instructions (due to specific instruction types or queuing
issues). Front-End issues are generally resolved by compiler techniques like code
layout (co-locating hot code), reducing code footprint, and Profile-Guided
Optimization (PGO).



Front-End Hierarchical Breakdown in
Amplifier XE

Expand Front-end Bound
to see the percentage of
the Front-end Bound
cycles classified as
“Front-End Latency”,
where no micro-ops were

2]

Reing | "Goina’ | specuntion | Bownd being delivered vs.
“Front-End Bandwidth”,
where <4 micro-ops were

14.3%) 7.0% 9% 748% being delivered.
16.6% 5.7% 45% BI%
125% 45% 75.0%
Front-End Bound =®
Front-End Latency ront-End Band... [€
Len... Fron... Fron... Fron...
ICac...| ITLB |Bran... DSB Ms
If Front-end Bound is Moo ove. | Rl swt...| Cha g | Band..| Band... Band..
i | VG | €S| W prefi...| ™| DSB | MITE| LSD
the primary bottleneck,
concentrate on Front-
End Latency. Resolve 0036

highlighted issues under
this category.




Front-End

Front-End Latency Bound

Why: Front-End latency can lead to the Back-End not having micro-
ops to execute (instruction starvation).

How: General Exploration Profile, Front-End Latency sub-category,
Metrics: ITLB Overhead, ICache Misses, Length-Changing Prefixes

What Now: If any of these metrics are highlighted for your
hotspot, try using better code layout and generation
techniques:

= Try using profile-guided optimizations (PGO) with your compiler

= Use linker ordering techniques (/ORDER on Microsoft's linker or a
linker script on gcc)

= Use switchesthat reduce code size, suchas /O1 or /Os

= For dynamically generated code, try co-locating hot code,
reducing code size,and avoidingindirect calls

Formulas:
% of cycles spent on ITLB Misses (ITLB Overhead):

ICACHE_64B.IFTAG_STALL/ CPU_CLK_UNHALTED.THREAD
% of cycles spent on ICache Misses:

ICACHE_16B.IFDATA_STALL / CPU_CLK_UNHALTED.THREAD
% of cycles due to LCP stalls:
ILD_STALL.LCP/CPU_CLK_UNHALTED.THREAD

Thresholds:

Thresholds: Investigate if -

% of cycles spent on ITLB Misses (ITLB Overhead) = .05 (5%)
% of cycles spent on ICache Misses = .05 (5%)

% of cycles due to LCP stalls = .05 (5%)

Note: To locate the exact areas in your code that are suffering from Front-End
latency issues, create a custom analysis to collect the events
FRONTEND_RETIRED.L1I_MISS_PS

and FRONTEND_RETIRED.L2_MISS_PS. These are precise events for instruction
fetch misses in the L1 instruction cache and L2 cache respectively.



Tuning for the Back-End Bound
Category

The Back-End of the pipeline
Accepts micro-operations from the Front-End

Re-orders them as necessary to schedule their execution in execution units
Retrieves needed operands from memory

Executes the operations

Commits results to memory




Back-End Bound, Illustrated

ANY

Front-End § Back-End
Q- _

Y Execution Retirement
Fetch & §_ —aCore ____
Decode R

Instruc_tlons, § Re-Order & __ @I

Predict N7 T T Execute Results
Branches D Instructions to Memory

7.

Occurs when the Back-End cannot accept micro-operations
for all 4 pipeline slots — usually because internal structures
are already filled with micro-ops waiting on data.

The back-end is the most common category for hotspots, and is most likely to be
the primary bottleneck.



Back-End Hierarchical Breakdown in
Amplifier XE Ve ~

® ® ® > see metrics in the Back-
End classified as "Memory
Front-End Bad Back-End ”
Retiring ik Speculation miih Bound”, where the back-

end could not accept new
micro-ops due to too many
outstanding memory
operations, vs “Core
Bound”, where the issue is

Qaturated execution ports)

Back-End Bound

] ]

MemoryBound | Core Bound

I
25% 07%
482% %.8%




Back-End Hierarchical Breakdown in

Amplifier XE

(] Expand the Memory Bound
B L Category to see issues
MemoryBound | Core Bound related to the various levels
of the memory hierarchy.
—| 08% 0% Back-End Bound
25% 07% Memary Bound ]
482% 26.8% [£2] 2] 2]
UBound | L2Bound | L3Bound | gy
und

0.498 0
408% 34.0%
Back-End Bound
Memory Bound
L1 Bound & L3 Bound DRAM Bound B

Ik [F] 1 Stor
DTLE | Loa.. | Lock | Spit | 4K | FB | gy |Con.. Data| L3 | L3 | SQ | Memory |Memoryla.. Bw’:d
Ove... |Bloc... | Late... | Loads | Alia... | Full Acc... Shar... Late...| Band..| Full | Bandwidth LLC Miss

0.003 0.000 24
0.000 1 4




Back-End Bound|

Cache Misses

Why: Cache misses raise the CPI of an application. Focus on
long-latency data accesses coming from 2nd and 3rd level
misses

How: General Exploration Profile, Memory Bound sub-category,
Metrics: L3 Bound>L3 Latency, DRAM Bound>Memory Latency>LLC Miss

What Now: If either metric is highlighted for your hotspot,

consider reducing misses:
= Change your algorithm to reduce data storage
= Block data accesses to fit into cache
= Check for sharing issues (See Contested Accesses)
= Align data for vectorization (and tell your compiler)
= Use the cache-line replacement analysis outlined in section B.3.4.2 of
Intel® 64 and IA-32 Architectures Optimization Reference Manual
= Use streaming stores
= Use software prefetch instructions

Thresholds: Investigate if -
% cycles for LLC Miss = .1
% cycles for L3 Latency = .2

More information on many of these suggestions can be found in the Intel® 64
and IA-32 Architectures Optimization Reference Manual at:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-
architectures-optimization-manual.html



Back-End Bound|

Contested Accesses

Why: Sharing modified data among cores (at L2 level) can raise the
latency of data access

How: General Exploration Profile, Memory Bound sub-category,
Metric: Contested Accesses

What Now: If this metric is highlighted for your hotspot, locate the

source code line(s) that is generating HITMs by viewing the source.

* Look forthe MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS eventwhich
will tag to the next instruction after the one that generated the HITM.

* Use knowledge of the code to determine if real or false sharingis
taking place. Make appropriate fixes:

= For real sharing, reduce sharing requirements
= For false sharing, pad variables to cache line boundaries

Formula:
% of cycles spent accessing data modified by another core:

( (60 * MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS) +
MEM_LOAD_L3_HIT_RETIRED.XSNP_MISS_PS )/ CPU_CLK_UNHALTED.THREAD
Thresholds: Investigate if -

% cycles accessing modified data = .05

This metric is also called write sharing. It occurs when one core needs data that
is found in a modified state in another core’s cache. This causes the line to be
invalidated in the holding core’s cache and moved to the requesting core’s cache.
If it is written again and another core requests it, the process starts again. The
cacheline ping pong-ing between caches causes longer access time than if it could
be simply shared amongst cores (as with read-sharing).

Write sharing can be caused by true sharing, as with a lock or hot shared data
structure, or by false sharing, meaning that the cores are modifying 2 separate
pieces of data stored on the same cacheline. This metric measures write sharing
at the L2 level only - that is, within one socket. If write sharing is observed at
this level it is possible it is occurring across sockets as well. Note that in the case
of real write sharing that is caused by a lock, Amplifier XE’s Locks and Waits
analysis should also indicate a problem. This hardware-level analysis will detect
other cases as well though (such as false sharing or write sharing a hot data
structure).



Back-End Bound|

Data Sharing

Why: Sharing clean data (read sharing) among cores (at L2 level)
has a penalty at least the first time due to coherency

How: General Exploration Profile, Memory Bound sub-category,
Metric: Data Sharing

What Now: If this metric is highlighted for your hotspot, locate

the source code line(s) that is generating HITs by viewing the

source.

= Look forthe MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT_PS event
which will tag to the next instruction after the one that generated the
HIT.

= Use knowledge of the code to determine if real or false sharingis
taking place. Make appropriate fixes:

= For real sharing, reduce sharing requirements
= For false sharing, pad variables to cache line boundaries

Formula:
% of cycles spent on Data Sharing:

(43 * MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT_PS )/
CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if -
% cycles accessing clean shared data = .05

This metric measures read sharing, or sharing of “clean” data, across L2 caches
within 1 CPU socket. The L3 cache has a set of “core valid” bits that indicate
whether each cacheline could be found in any L2 caches on the same socket, and
if so, which ones. The first time a line is brought into the L3 cache, it will have
core valid bits set to 1 for whichever L2 cache it went into. If that line is then
read by a different core, then it will be fetched from L3, where the core valid bits
will indicate it is present in one other core. The other L2 will have to be snooped,
resulting in a longer latency access for that line. This metric measures the impact
of that additional access time, when the cacheline in question is only being read-
shared. In the case of read-sharing, the line can co-exist in multiple L2 caches in
shared state, and for future accesses more than one core valid bit will be set.
Then when other cores request the line, no L2 caches will need to be snooped,
because the presence of 2 or more core valid bits tells the LLC that the line is
shared (for reading) and ok to serve. Thus the impact of this only happens the



first time a cacheline is requested for reading by a second L2 after it has already
been placed in the L3 cache. The impact of sharing modified data across L2s is
different and is measured with the “Contested Accesses” metric.



Back-End Bound|

Other Data Access Issues: Blocked Loads
Due to No Store Forwarding

Why: If it is not possible to forward the result of a store through
the pipeline, dependent loads may be blocked

How: General Exploration Profile, Memory Bound sub-category,
Metric: Loads Blocked by Store Forwarding

What Now: If the metric is highlighted for your hotspot,
investigate:

View source and look at the LD_BLOCKS.STORE_FORWARD
event. Usually this event tags to next instruction after the
attempted load that was blocked. Locate the load, then try to
find the store that cannot forward, which is usually within the
prior 10-15 instructions. The most common case is that the
store is to a smaller memory space than the load. Fix the store
by storing to the same size or larger space as the ensuing load.

Formula:
Blocked Store Forwarding Cost = ( 13 * LD_BLOCKS.STORE_FORWARD ) /
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if -
Cost = .05

Store forwarding occurs when there are two memory instructions in the pipeline,
a store followed by a load from the same address. Instead of waiting for the data
to be stored to the cache, it is “forwarded” back along the pipeline to the load
instruction, saving a load from the cache. Store forwarding is the desired
behavior, however, in certain cases, the store may not be able to be forwarded,
so the load instruction becomes blocked waiting for the store to write to the cache
and then to load it.



Back-End Bound|

Other Data Access Issues: 4K Aliasing

Why: Aliasing conflicts result in having to re-issue loads.

How: General Exploration Profile, Memory Bound sub-category,
Metric: 4K Aliasing

What Now: If this metric is highlighted for your hotspot,
investigate at the source code level.

Fix these issues by changing the alignment of the load. Try
aligning data to 32 bytes, changing offsets between input and
output buffers (if possible), or using 16-Byte memory accesses
on memory that is not 32-Byte aligned.

Formula:
Aliasing Conflicts Cost = ( 7 * LD_BLOCKS_PARTIAL.ADDRESS_ALIAS )/
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if
Aliasing conflicts cost = .1

This occurs when a load is issued after a store and their memory addresses are
offset by (4K). When this is processed in the pipeline, the issue of the load will
match the previous store (the full address is not used at this point), so pipeline
will try to forward the results of the store and avoid doing the load (this is store
forwarding). Later on when the address of the load is fully resolved, it will not
match the store, and so the load will have to be re-issued from a later point in the
pipe. This has a 5-cycle penalty in the normal case, but could be worse in certain
situations, like with un-aligned loads that span 2 cache lines.



Back-End Bound|

Other Data Access Issues: DTLB Misses

Why: First-level DTLB Load misses (Hits in the STLB) incur a
latency penalty. Second-level misses require a page walk that
can affect your application’s performance.

How: General Exploration Profile, Memory Bound sub-category,
Metric: DTLB Overhead

What Now: If this metric is highlighted for your hotspot,
investigate at the source code level.

To fix these issues, target data locality to TLB size, use the
Extended Page Tables (EPT) on virtualized systems, try large
pages (database/server apps only), increase data locality by using
better memory allocation or Profile-Guided Optimization

Formula:
DTLB Overhead = ( ( 7 * DTLB_LOAD_MISSES.STLB_HIT ) +
DTLB_LOAD_MISSES.WALK_DURATION ) / CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if-
DTLB Overhead = .1

Target data locality to TLB size: this is accomplished via data blocking and trying
to minimize random access patterns.

Note: this is more likely to occur with server applications or applications with a
large random dataset

TLB: Translation Lookaside Buffer
DTLB: Data Translation Lookaside Buffer
STLB: Second-level Translation Lookaside Buffer
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Back-End Bound|
Divider
Why: Divide instructions take longer than other arithmetic

instructions and can only be executed on a limited number of ports.

How: General Exploration Profile, Core Bound sub-category, Metric:
Divider

What Now: If this metric is highlighted for your hotspot, locate the

source code line(s) that is generating divides by viewing the source.
= Look forthe ARITH.DIVIDER_ACTIVE event.

* Ensurethe divide code is being compiled with optimizations turned on
* Use vectorized divide instructions

* Use reciprocal-multiplication whenever possible

Formula:
% of cycles spent with the divider unit active:

ARITH.DIVIDER_ACTIVE / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if -
% cycles with an active divider = .05



Tuning for the Bad Speculation
Category

Speculation is when:
A micro-operation is allowed to execute, before it is known whether that
operation will retire
Allows for greater Instruction-Level Parallelism in an out-of-order pipeline




Bad Speculation, Illustrated

Front-End Back-End

Execution Retirement
Fetch &

Decode
Instructions,
Predict
Branches

Occurs when micro-ops are removed from the
Back-End and do not retire.

Micro-operations that are removed from the Back-End most likely happen because
the Front-End mispredicted a branch. This is discovered in the Back-End when
the branch operation is executed. At this point, if the target of the branch was
incorrectly predicted, the micro-operation and all subsequent incorrectly predicted
operations are removed and the Front-End is redirected to begin fetching
instructions from the correct target.



Bad Speculation

Branch Mispredicts

Why: Mispredicted branches cause pipeline inefficiencies due to
wasted work or instruction starvation (while waiting for new
instructions to be fetched)

How: General Exploration Profile, Metric: Branch Mispredict

What Now: If this metric is highlighted for your hotspot try to
reduce misprediction impact:

= Use compiler options or profile-guided optimization (PGO) to
improve code generation

* Apply hand-tuning by doing things like hoisting the most
popular targets in branch statements.

Formula:

Branch Mispredict = BR_MISP_RETIRED.ALL_BRANCHES_PS/
(BR_MISP_RETIRED.ALL_BRANCHES_PS + MACHINE_CLEARS.COUNT) *
(UOPS_ISSUED.ANY - UOPS_RETIRED.RETIRE_SLOTS + 4 *
INT_MISC.RECOVERY_CYCLES ) / (CPU_CLK_UNHALTED.THREAD * 4)

Threshold: Investigate if -
Cost is = .2

Note that all applications will have some branch mispredicts - it is not the number
of mispredicts that is the problem but the impact.

To do hand-tuning, you need to locate the branch causing the mispredicts. This
can be difficult to track down due to the fact that this event will normally tag to
the first instruction in the correct path that the branch takes. Try and determine
which code path led to this destination.



Bad Speculation

Machine Clears

Why: Machine clears cause the pipeline to be flushed and the
store buffers emptied, resulting in a significant latency penalty.

How: General Exploration Profile, Metric: Machine Clears

Now What: If this metric is highlighted for your hotspot try to
determine the cause using the specific events:

= |f MACHINE_CLEARS.MEMORY_ORDERING is significant,
investigate at the source code level. This could be caused by
4K aliasing conflicts or contention on a lock (both previous
issues).

= |f MACHINE_CLEARS.SMC is significant, the clears are being
caused by self-modifying code, which should be avoided.

Threshold: Investigate if -
Cost is = .02

Machine clears are generally caused by either contention on a lock, or failed
memory disambiguation from 4k aliasing (both earlier issues). The other
potential cause is self-modifying code (SMC).



Tuning for the Retiring Category

Retirement is:
The completion of a micro-op's execution
If the micro-op is the last micro-op for an instruction, it is also the completion
of an instruction’s execution
When results of an instruction’s execution are committed to the architectural
state (cache, memory, etc...)




Retiring, Illustrated

Front-End Back-End

Execution Retirement
Fetch & Core

Decode ——— e ——— H-op

Instruc.tlons, Re-Grder & T .
Predict kbbbt Execute T LAl
Branches Instructions to Memory

________ p-op

Occurs when a pipeline slot is filled with a micro-op
that retired. The desirable category! But some issues
are still possible.

In general, having as many pipeline slots retiring per cycle as possible is the goal.
Besides algorithmic improvements like parallelism, There are two potential areas
to investigate for the retiring category. The first is whether vectorization can be
applied to make the instructions that are retiring even more efficient. See Code
Study 1 for more on this. The second is whether microcode assists can be
eliminated from the instruction stream.



Retiring Hierarchical Breakdown in
Ampllfler XE Expand Retiring to see the

percentage of the Retiring slots
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Retiring
FP Arithmetic

Why: Floating point arithmetic can be expensiveif done inefficiently.

How: General Exploration Profile, Metrics: FP Arithmetic, FP x87, FP
Scalar, FP Vector

What Now: If FP x87 or FP Scalar metrics are significant, look to
increase vectorization.

= Intel Compiler /QxCORE-AVX2 (Windows*) or -xCORE-AVX2 (Linux*)
switches

= GCC: -march=core-avx2

= Optimize to AVX - See the Intel® 64 and IA-32 Architectures Optimization
Reference Manual, chapter 11

General Retirement
FP Arithmetic «
FPx87 FP Scalar FP Vector

Other

0.140 0.000 0.860
0.192 0.000 0,808
0.000 0.000 1.000

Formula:

FP x87 % = UOPS_EXECUTED.X87 / UOPS_EXECUTED.THREAD

FP Scalar % = ( FP_ARITH_INST_RETIRED.SCALAR_SINGLE +
FP_ARITH_INST_RETIRED.SCALAR_DOUBLE ) / UOPS_RETIRED.RETIRE_SLOTS
FP Vectory % = ( FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE +
FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE +
FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE +
FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE ) /
UOPS_RETIRED.RETIRE_SLOTS

These metrics represent a breakdown of each type of instruction (x87, Scalar,
Vector) as a percentage of all retired uops. Try to improve vectorization to
increase the FP Vector percentage and decrease the x87 and FP Scalar
percentages.



Retiring
Microcode Assists

Why: Assists from the microcode sequencer can have long
latency penalties.

How: General Exploration Profile, Metric: Microcode Sequencer

What Now: If this metric is highlighted for your hotspot, re-
sample using the additional assist events to determine the cause.

= |f FP_ASSISTS.ANY/INST_RETIRED.ANY is significant, check for
denormals. To fix enable FTZ and/or DAZ if using SSE/AVX
instructions or scale your results up or down dependingon the
problem

= |f ((OTHER_ASSISTS.AVX_TO_SSE_NP*75)/
CPU_CLK_UNHALTED.THREAD) or
((OTHER_ASSISTS.SSE_TO_AVX_NP*75)/
CPU_CLK_UNHALTED.THREAD)is greater than .1, reduce transitions
between SSE and AVX code. See http://software.intel.com/en-
us/articles/avoiding-avx-sse-transition-penalties

Formula:
Assist % = (UOPS_RETIRED.RETIRE_SLOTS/UOPS_ISSUED.ANY) * (
IDQ.MS_UOPS/(CPU_CLK_UNHALTED.THREAD * 4) )

Threshold: Investigate if -
Assist Cost > .2

There are many instructions that can cause assists when there is no performance
problem. If you see MS_CYCLES it doesn’t necessarily mean there is an issue,
but whenever you do see a significant amount of MS_CYCLES, check the other
metrics to see if it's one of the problems we mention.



The “Software on Hardware” Tuning
Process

For each Hotspot

» Determine efficiency

= [finefficient:
—  Determine primary bottleneck
— Identify architectural reason for inefficiency
—  Optimize the issue




Additional Topic:

Memory Access

Why: Memory bandwidth bottlenecks increase the latency at
which cache misses are serviced

How: Memory Access Profile
What Now:

=  Compute the maximum theoretical memory bandwidth per socket for your
platform in GB/s: (<MT/s> * 8 Bytes/clock * <num channels>) / 1000

= Run bandwidth analysis on your application. If total bandwidth per socket is
> 75% of the maximum theoretical bandwidth, your application may be
experiencing loaded (higher) latencies

= |f appropriate, make system tuning adjustments (upgrading / balancing
DIMMs, disabling HW prefetchers)

= Reduce bandwidth usage if possible: remove ineffective SW prefetches,
make algorithmic changes to reduce data storage/sharing, reduce data
updates, and balance memory access across sockets =
inte!

Max theoretical bandwidth, per socket, for processor with DDR 1600 and 4
memory channels: 51.2 GB/s



Additional Topic:
Memory Bandwidth
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Additional Topic:
TSX Exploration

™ Choose Target and Analysis Type

A b

- mgo;mm Analysis (a) Elapsed Time: 17.844s
g Mi;,:‘ﬁf;wu Clockticks: 163,286,159,575
A Concurrency Transactional Cycles: 15,842,125,660
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A
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A

adiiscinl, Cycles spent within a TSX section
[ Select TSX Exploration Analysis Type ] that was aborted

abort Cycles (%) 33.724

Intel® Transactional Synchronization Extensions (Intel® TSX) provide hardware
transactional memory support. They expose a speculative execution mode to the
programmer to improve locking performance. For more detailed information about
developing software with Intel TSX see http://www.intel.com/software/tsx.

A large percentage of aborted cycles may represent a negative performance
impact from the use of Intel TSX. Use this Analysis Type along with other
performance metrics like elapsed time, CPI, or Retiring Percentage to measure
how Intel TSX is affecting your performance.



Additional Topic:
TSX Exploration
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For a detailed description of Intel® TSX performance recommendations, see
Chapter 12 of the Intel® 64 and IA-32 Architectures Optimization Reference
Manual



Additional Topic:
Metric Reliability
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Grayed out metric values represent low
reliability of the metrics for each value in

the grid.

The General Exploration analysis type multiplexes hardware events during
collection, which can result in imprecise results if too few samples are collected.
The GUI will gray out metrics if the reliability is low based on the number of
samples collected. If a metric is grayed out for your area of interest, consider
increasing the runtime of the analysis or allowing multiple runs via the project
properties.

Previous versions of the tool used a MUX Reliability metric for each row, however
this was unable to distinguish between different metrics on the same row.



Good Luck!
For more information:

VTune Amplifier XE Videos, Forums, and Resources:
http://software.intel.com/en-us/intel-vtune-amplifier-xe/#pid-3659-760/

Intel® 64 and IA-32 Architecture Software Developer’'s Manuals:
http://www.intel.com/products/processor/manuals/index.htm

VTune Amplifier XE Tuning Guides for Other microarchitectures:
http://software.intel.com/en-us/articles/processor-
specific-performance-analysis-papers

For optimization of the integrated graphics controller:
www.intel.com/software/gpa
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Optimization Notice

Intel's compilers may or may not optimize to the same degree for
non-Intel microprocessors for optimizations that are not unique
to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel
does not guarantee the availability, functionality, or effectiveness
of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product
are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved
for Intel microprocessors. Please refer to the applicable product
User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
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