








This image represents a general CPU layout and is intended to help illustrate the 
concepts described in this guide. It is not designed to be a definitive 
representation of the microarchitecture.

Intel® microarchitecture codename Skylake CPUs -
http://ark.intel.com/products/codename/37572/Skylake



Most screenshots in this presentation were taken from Intel® VTune™ Amplifier 
XE 2016 Update 2.
Screenshots from different versions of the tool may have minor differences.



The logic for identifying issues on Intel Microarchitecture Codename Skylake is 
embedded into the interface. All the formulas and metrics used are the same as 
the ones given in this guide. You no longer have to apply formulas and rules to 
the data yourself to figure out what it means – using this guide and the interface 
tuning features, you can easily pinpoint problems and possible solutions. 
The formulas and metrics are only applied to the General Exploration profile, and 
the General Exploration viewpoint (which is automatic). For all other profiles, it 
will just show the raw data. 







Note that issue highlighting occurs under 2 conditions: 
1. The value for the metric is over Intel VTune Amplifier XE’s pre-determined 

threshold
2. The associated function uses 5% or greater of the CPU clockticks sampled



Both Intel® Hyper-Threading Technology and Intel® Turbo Boost 2.0 Technology 
can be enabled or disabled through BIOS on most platforms.
Contact with the system vendor or manufacturer for specifics prior to making 
changes. Incorrectly modifying BIOS settings from those supplied by the 
manufacturer can result in rendering the system unusable and may void the 
warranty.

Don’t forget to re-enable these features once you are through with the software 
optimization process! 







For this processor family, the CPU_CLK_UNHALTED.THREAD counter measures 
unhalted clockticks on a per hardware thread basis. There is no per-core clocktick
counter, which has been available on some previous processors. The
CPU_CLK_UNHALTED.THREAD counter allows you to see where cycles are being 
spent on each individual hardware thread.
There is also a CPU_CLK_UNHALTED.REF counter, which counts unhalted 
clockticks per thread, at the reference frequency for the CPU.  In other words, the 
CPU_CLK_UNHALTED.REF counter should not increase or decrease as a result of 
frequency changes due to Turbo Mode 2.0 or Speedstep Technology. This counter 
can be useful for removing the variance introduced by Turbo Mode 2.0 or 
Speedstep Technology when comparing multiple analyses.





Formula:
(UOPS_RETIRED.RETIRE_SLOTS/ (4*CPU_CLK_UNHALTED.THREAD)) 

Thresholds: Investigate if -
% Retiring < 75

This metric is based on the fact that when operating at peak performance, the 
pipeline on this CPU should be able to retire 4 micro-operations per clock cycle (or 
“clocktick”).  The formula looks at “slots” in the pipeline for each core, and sees if 
the slots are filled, and if so, whether they contained a micro-op that retired.  
More details on this methodology are available in the coming slides or in this 
paper: http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-
top-down-characterization-of-microarchitectural-issues

http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues




Formula:
CPU_CLK_UNHALTED.THREAD/INST_RETIRED.ANY

Threshold:
In the interface, CPI will be highlighted if > 1.  This is a very general rule based 
on the fact that some well tuned apps achieve CPIs of 1 or below.  However, 
many apps will naturally have a CPI of over 1 – it is very dependent on workload 
and platform.  It is best used as a comparison factor – know your app’s CPI and 
see if over time it is moving upward (that is bad) or reducing (good!).

Note that CPI is a ratio!  Cycles per instruction.  So if the code size changes for a 
binary, CPI will change.  In general, if CPI reduces as a result of optimizations, 
that is good, and if it increases, that is bad.  However there are exceptions.  
Some code can have a very low CPI but still be inefficient because more 
instructions are executed than are needed.  This problem is discussed using the 
Code Examination method for determining efficiency.

Additionally, CPI can be affected if using Intel® Hyper-threading. In a serial 
workload, or a workload with Intel® Hyper-threading disabled the theoretical best 
CPI on a hardware thread is 0.25 because the core can allocate and retire 4 
instructions per cycle. In a workload with Intel® Hyper-threading enabled which 
utilizes both hardware threads effectively, the ideal CPI per-thread would be 0.5 
instead of 0.25. This is because the hardware threads share allocation and 



retirement resources on the core.

Note: Optimized code (e.g. with AVX instructions) may actually increase the CPI, 
and increase stall % – but improve the performance. This is because a single 
vector instruction will generally take more cycles than a single scalar instruction, 
but it also often performs more work. For example, a vector instruction may take 
twice as many cycles, but perform the work of four scalar instructions. In that 
case, the average CPI will increase, but the application will still be running faster.

CPI is just a general efficiency metric – the real measure of efficiency is work 
taking less time.



This method involves looking at the disassembly to make sure the most efficient 
instruction streams are generated.  This can be complex and can require an 
expert knowledge of the Intel instruction set and compiler technology.  What we 
have done is describe how to find 3 easy-to-detect code patterns and suggest 
how they may be implemented more efficiently using new features of the CPU.  



For more on vectorization in general: http://software.intel.com/en-
us/articles/vectorization-toolkit 

SSE instructions will look like: addps xmm4, xmm5.

+ addss is a s(calar) Intel® SSE instruction – packed SSE instructions such as 
addps are a better choice



Note that FMA instructions perform a multiply, add, and round.  A multiply 
followed by an add would have 2 rounds (one after the multiply and one after the 
add).  Since the FMA eliminates the intermediate rounding operation, results may 
be different when using FMAs as opposed to multiplies followed by adds.  For 
more information, see the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual at 
http://download.intel.com/products/processor/manual/325462.pdf.

http://download.intel.com/products/processor/manual/325462.pdf




For a hotspot that is inefficient, determining the primary bottleneck is the first 
step.  Optimizing code to fix issues outside the primary bottleneck category may 
not boost performance – the biggest boost will come from resolving the biggest 
bottleneck.  Generally, if Retiring is the primary bottleneck, that is good.  See 
next slides.



Note the way that this methodology allows us to classify what percentage of all 
pipeline slots end up in each category, for each cycle and for each core. It is 
possible that for a given dataset, there may be a significant percentage of 
pipeline slots in multiple categories that merit investigation. Start with the 
category with the highest percentage of pipeline slots. Ideally a large percentage 
of slots will fall into the “Retiring” category, but even then, it may be possible to 
make your code more efficient.

For a complete description of this methodology, see http://software.intel.com/en-
us/articles/how-to-tune-applications-using-a-top-down-characterization-of-
microarchitectural-issues

http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues


The distribution of pipeline slots in these four categories is very useful for 
developers.  Although metrics based on events have been possible for many 
years, before this characterization there was no approach for identifying which 
possible performance issues were the most impactful.  When performance metrics 
are placed into this framework, a developer can see which issues need to be 
tackled first. 









Front-End issues are caused by delays in fetching code (due to caching or ITLB 
issues) or in decoding instructions (due to specific instruction types or queuing 
issues). Front-End issues are generally resolved by compiler techniques like code
layout (co-locating hot code), reducing code footprint, and Profile-Guided 
Optimization (PGO).  





Formulas:
% of cycles spent on ITLB Misses (ITLB Overhead):

ICACHE_64B.IFTAG_STALL/ CPU_CLK_UNHALTED.THREAD
% of cycles spent on ICache Misses:

ICACHE_16B.IFDATA_STALL / CPU_CLK_UNHALTED.THREAD

% of cycles due to LCP stalls:

ILD_STALL.LCP/CPU_CLK_UNHALTED.THREAD

Thresholds:
Thresholds: Investigate if –
% of cycles spent on ITLB Misses (ITLB Overhead) ≥ .05 (5%)
% of cycles spent on ICache Misses ≥ .05 (5%)

% of cycles due to LCP stalls ≥ .05 (5%)

Note: To locate the exact areas in your code that are suffering from Front-End 
latency issues, create a custom analysis to collect the events 
FRONTEND_RETIRED.L1I_MISS_PS
and FRONTEND_RETIRED.L2_MISS_PS. These are precise events for instruction 
fetch misses in the L1 instruction cache and L2 cache respectively.





The back-end is the most common category for hotspots, and is most likely to be 
the primary bottleneck.







Thresholds: Investigate if –

% cycles for LLC Miss ≥ .1

% cycles for L3 Latency ≥ .2

More information on many of these suggestions can be found in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual at:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-
architectures-optimization-manual.html



Formula:
% of cycles spent accessing data modified by another core:

( (60 * MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS) + 
MEM_LOAD_L3_HIT_RETIRED.XSNP_MISS_PS )/ CPU_CLK_UNHALTED.THREAD
Thresholds: Investigate if –
% cycles accessing modified data ≥ .05

This metric is also called write sharing.  It occurs when one core needs data that 
is found in a modified state in another core’s cache.  This causes the line to be 
invalidated in the holding core’s cache and moved to the requesting core’s cache.  
If it is written again and another core requests it, the process starts again.  The 
cacheline ping pong-ing between caches causes longer access time than if it could 
be simply shared amongst cores (as with read-sharing).  
Write sharing can be caused by true sharing, as with a lock or hot shared data 
structure, or by false sharing, meaning that the cores are modifying 2 separate 
pieces of data stored on the same cacheline.  This metric measures write sharing 
at the L2 level only – that is, within one socket.  If write sharing is observed at 
this level it is possible it is occurring across sockets as well. Note that in the case 
of real write sharing that is caused by a lock, Amplifier XE’s Locks and Waits 
analysis should also indicate a problem.  This hardware-level analysis will detect 
other cases as well though (such as false sharing or write sharing a hot data 
structure).



Formula:

% of cycles spent on Data Sharing:

( 43 * MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT_PS ) / 
CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if –
% cycles accessing clean shared data ≥ .05

This metric measures read sharing, or sharing of “clean” data, across L2 caches 
within 1 CPU socket.  The L3 cache has a set of “core valid” bits that indicate 
whether each cacheline could be found in any L2 caches on the same socket, and 
if so, which ones.  The first time a line is brought into the L3 cache, it will have 
core valid bits set to 1 for whichever L2 cache it went into.  If that line is then 
read by a different core, then it will be fetched from L3, where the core valid bits 
will indicate it is present in one other core.  The other L2 will have to be snooped, 
resulting in a longer latency access for that line.  This metric measures the impact 
of that additional access time, when the cacheline in question is only being read-
shared.  In the case of read-sharing, the line can co-exist in multiple L2 caches in 
shared state, and for future accesses more than one core valid bit will be set.  
Then when other cores request the line, no L2 caches will need to be snooped, 
because the presence of 2 or more core valid bits tells the LLC that the line is 
shared (for reading) and ok to serve.  Thus the impact of this only happens the 



first time a cacheline is requested for reading by a second L2 after it has already 
been placed in the L3 cache.  The impact of sharing modified data across L2s is 
different and is measured with the “Contested Accesses” metric.  



Formula:
Blocked Store Forwarding Cost = ( 13 * LD_BLOCKS.STORE_FORWARD ) / 
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if –
Cost ≥ .05

Store forwarding occurs when there are two memory instructions in the pipeline, 
a store followed by a load from the same address.  Instead of waiting for the data 
to be stored to the cache, it is “forwarded” back along the pipeline to the load 
instruction, saving a load from the cache.  Store forwarding is the desired 
behavior, however, in certain cases, the store may not be able to be forwarded, 
so the load instruction becomes blocked waiting for the store to write to the cache 
and then to load it.  



Formula:
Aliasing Conflicts Cost = ( 7 * LD_BLOCKS_PARTIAL.ADDRESS_ALIAS ) / 
CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if
Aliasing conflicts cost ≥ .1

This occurs when a load is issued after a store and their memory addresses are 
offset by (4K).  When this is processed in the pipeline, the issue of the load will 
match the previous store (the full address is not used at this point), so pipeline 
will try to forward the results of the store and avoid doing the load (this is store 
forwarding).  Later on when the address of the load is fully resolved, it will not 
match the store, and so the load will have to be re-issued from a later point in the 
pipe.  This has a 5-cycle penalty in the normal case, but could be worse in certain 
situations, like with un-aligned loads that span 2 cache lines.



Formula:
DTLB Overhead = ( ( 7 * DTLB_LOAD_MISSES.STLB_HIT ) + 
DTLB_LOAD_MISSES.WALK_DURATION ) / CPU_CLK_UNHALTED.THREAD

Threshold: Investigate if-
DTLB Overhead ≥ .1

Target data locality to TLB size: this is accomplished via data blocking and trying 
to minimize random access patterns.
Note: this is more likely to occur with server applications or applications with a 
large random dataset

TLB: Translation Lookaside Buffer
DTLB: Data Translation Lookaside Buffer
STLB: Second-level Translation Lookaside Buffer





Formula:
% of cycles spent with the divider unit active:

ARITH.DIVIDER_ACTIVE / CPU_CLK_UNHALTED.THREAD

Thresholds: Investigate if –
% cycles with an active divider ≥ .05





Micro-operations that are removed from the Back-End most likely happen because 
the Front-End mispredicted a branch.  This is discovered in the Back-End when 
the branch operation is executed.  At this point, if the target of the branch was 
incorrectly predicted, the micro-operation and all subsequent incorrectly predicted 
operations are removed and the Front-End is redirected to begin fetching 
instructions from the correct target.



Formula:
Branch Mispredict = BR_MISP_RETIRED.ALL_BRANCHES_PS/ 
(BR_MISP_RETIRED.ALL_BRANCHES_PS + MACHINE_CLEARS.COUNT) * 
(UOPS_ISSUED.ANY - UOPS_RETIRED.RETIRE_SLOTS + 4 * 
INT_MISC.RECOVERY_CYCLES ) / (CPU_CLK_UNHALTED.THREAD * 4)

Threshold: Investigate if -
Cost is ≥ .2

Note that all applications will have some branch mispredicts - it is not the number 
of mispredicts that is the problem but the impact.  
To do hand-tuning, you need to locate the branch causing the mispredicts.  This 
can be difficult to track down due to the fact that this event will normally tag to 
the first instruction in the correct path that the branch takes. Try and determine 
which code path led to this destination.



Threshold: Investigate if -
Cost is ≥ .02

Machine clears are generally caused by either contention on a lock, or failed 
memory disambiguation from 4k aliasing (both earlier issues).  The other 
potential cause is self-modifying code (SMC).  





In general, having as many pipeline slots retiring per cycle as possible is the goal.  
Besides algorithmic improvements like parallelism, There are two potential areas 
to investigate for the retiring category.  The first is whether vectorization can be 
applied to make the instructions that are retiring even more efficient.  See Code 
Study 1 for more on this.  The second is whether microcode assists can be 
eliminated from the instruction stream.





Formula:
FP x87 % = UOPS_EXECUTED.X87 / UOPS_EXECUTED.THREAD
FP Scalar % = ( FP_ARITH_INST_RETIRED.SCALAR_SINGLE + 
FP_ARITH_INST_RETIRED.SCALAR_DOUBLE ) / UOPS_RETIRED.RETIRE_SLOTS
FP Vectory % = ( FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 
FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + 
FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + 
FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE ) / 
UOPS_RETIRED.RETIRE_SLOTS

These metrics represent a breakdown of each type of instruction (x87, Scalar, 
Vector) as a percentage of all retired uops. Try to improve vectorization to 
increase the FP Vector percentage and decrease the x87 and FP Scalar 
percentages.



Formula:
Assist % = (UOPS_RETIRED.RETIRE_SLOTS/UOPS_ISSUED.ANY) * ( 
IDQ.MS_UOPS/(CPU_CLK_UNHALTED.THREAD * 4) )

Threshold: Investigate if –
Assist Cost ≥ .2

There are many instructions that can cause assists when there is no performance 
problem.  If you see MS_CYCLES it doesn’t necessarily mean there is an issue, 
but whenever you do see a significant amount of MS_CYCLES, check the other 
metrics to see if it’s one of the problems we mention.





Max theoretical bandwidth, per socket, for processor with DDR 1600 and 4 
memory channels: 51.2 GB/s





Intel® Transactional Synchronization Extensions (Intel® TSX) provide hardware 
transactional memory support. They expose a speculative execution mode to the 
programmer to improve locking performance. For more detailed information about 
developing software with Intel TSX see http://www.intel.com/software/tsx. 

A large percentage of aborted cycles may represent a negative performance 
impact from the use of Intel TSX. Use this Analysis Type along with other 
performance metrics like elapsed time, CPI, or Retiring Percentage to measure 
how Intel TSX is affecting your performance.



For a detailed description of Intel® TSX performance recommendations, see 
Chapter 12 of the Intel® 64 and IA-32 Architectures Optimization Reference 
Manual



The General Exploration analysis type multiplexes hardware events during 
collection, which can result in imprecise results if too few samples are collected. 
The GUI will gray out metrics if the reliability is low based on the number of 
samples collected. If a metric is grayed out for your area of interest, consider 
increasing the runtime of the analysis or allowing multiple runs via the project 
properties. 

Previous versions of the tool used a MUX Reliability metric for each row, however 
this was unable to distinguish between different metrics on the same row.










