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1
Overview

1.1

Executive Summary

This document provides a technical overview of the architecture of the Intel® Platform Innovation
Framework for EFI (hereafter referred to as “the Framework™). The Framework is a firmware
infrastructure that may be used to initialize and configure systems and then load operating systems
(OSs) or embedded operating environments for computers that use processors based on or that are
compatible with Intel® Architecture (IA). The Framework differs from previous generations of
firmware infrastructure used on IA systems in the following ways:

e [t employs a modular component design.

e [t uses high-level language coding wherever possible.

e [t is designed from the outset to support long-term growth of capabilities in the preboot
environment.

To promote interoperability of firmware building blocks in the horizontal industry that is based
on IA, such a firmware design needs to be implemented in a high-level language with an open
interface that allows other parties such as independent BIOS vendors (IBVs), original equipment
manufacturers (OEMs), independent software vendors (ISVs), and independent hardware vendors
(IHVs) to add platform innovation around a central framework in the form of plug-in components
known as EFI drivers.

The task of boot firmware (whether the BIOS or firmware based on the Framework) is to make a
collection of hardware before the boot look like a complete system after the boot. For the
foreseeable future, it is less expensive to build chips and boards that power up uninitialized so that,
when reset, systems built around these components are in a generally primitive state. They rely
heavily on the boot firmware to prepare the system to boot the OS, provide services to the OS
(particularly early in the boot process), and provide manageability data on the system.

The Framework architecture supports these requirements using a series of phases, each building on
the preceding phase. Each phase is characterized by the resources available to it, the rules by which
the code in the phase must abide, and the results of the phase.

The infrastructure available in each phase is provided by the central framework, while the platform-
specific features are implemented using intercommunicating modules known as EFI drivers. EFI
drivers are somewhat analogous to device drivers in OSs. They provide the Framework
architecture with its extensibility and allow it to do the following:

e Meet requirements from a range of platforms

e Incorporate new initiatives and fixes, as well as new hardware

e Support modular software architecture

EFTI drivers can be developed at different times by different organizations, which introduces issues
that monolithic, traditional BIOSs did not face. The Framework defines powerful solutions for
sequencing EFI driver execution, abstracting EFI driver interfaces, and managing shared resources.
The Framework and EFI drivers may optionally be cryptographically validated before use to ensure
that a chain of trust exists from power-on until the OS boots and beyond.

Version 0.9 September 2003 11
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1.2 Purpose and Intended Audience

This document defines only the highest level of the Framework architecture. This scope is intended
to provide readers with a conceptual understanding of the main elements of the Framework
architecture design from a functional point of view.

The detail provided in this specification is insufficient to create a prototype. A series of
specifications detailing the various programming interfaces at successively more detailed levels is
available to expand on the architectural description presented here.

The audience focus for this document is primarily on developers who will be creating or modifying
firmware code that is to be used on systems that implement Framework-style firmware. Such
developers include the following:

e Silicon support developers intending to create modules and EFI drivers to support processor or
chipset components

e [BV and OEM groups that create complete firmware packages for system-level board designs
e [HV developers creating code to support add-in cards or devices

In addition, this document may be of interest to developers who are working on OS loaders or other
applications or test programs that are designed to function in the preboot environment.

1.3 Structure of the Document

The remainder of this document is divided into sections. Each section describes either the design of
code that implements a phase of operation defined as part of the Framework or the design of a
major subsystem of a firmware implementation based on Framework architecture.

Table 1-1 describes the organization of this specification.

Table 1-1. Specification Organization and Contents

Section Description

1. Overview Provides a general description of the Framework architecture, and
describes the organization, goals, and target audience for the Framework
Architecture Specification.

2. Security (SEC) Phase Describes the initial operations after platform reset or power-on to ensure
that firmware integrity is intact.

3. Pre-EFI Initialization (PEI) = Provides a detailed description of low-level code to do minimal processor,

Phase chipset, and platform configuration to support memory discovery.
4. Driver Execution Provides a detailed description of the operating environment for the
Environment (DXE) majority of firmware code, which is built as EFI drivers, that complete
Phase initialization of platform and devices.
5. Boot Device Selection Provides a detailed description of the platform-centered policy engine to
(BDS) Phase determine how an OS or runtime environment to boot is selected and
loaded.
6. Runtime (RT) Phase Describes the code that implements services available from the firmware
to the runtime operating environment on the system, typically a shrink-
wrap OS.
continued
12 September 2003 Version 0.9
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Table 1-1. Specification Organization and Contents (continued)

Section Description

7. Atfterlife (AL) Phase Describes the support for the platform retaking control after the normal
runtime environment terminates by either user intervention or system
failure.

8. Firmware Store Describes the firmware store; its functions; the formats of modules; and the

methods of accessing, updating, and recovering modules in the store.

9. User Interface Describes the presentation services and infrastructure to support user
interactions for operations such as platform or device configuration and
BDS policy management.

10. Applied Security Describes the required and optional security services available in the
Framework environment and gives examples of their application in various
systems.

11. Manageability Describes services that support platform-centered management and

system state reporting capabilities.

12. Legacy Compatibility Describes the compatibility code that implements compatibility between the
EFI OS and devices requiring a traditional option ROM (OpROM) or
applications requiring services otherwise only available through a
traditional BIOS.

13. Boot Paths Describes routes through the Framework implementation that may be
taken during power-on, power management events, and other system state
transitions.

Glossary An alphabetical list of terms and abbreviations used in this specification,

along with their definitions.

References Lists the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

Index Alphabetical index for the Framework Architecture Specification.

1.4 The Framework and EFI

The Extensible Firmware Interface Specification is a public industry specification that describes an
abstract programmatic interface between platform firmware and shrink-wrap OSs or other custom
application environments.

The Framework is designed to take advantage of the abstraction inherent in the EFI specification.
Firmware based on the Framework architecture will deliver a complete implementation of platform
firmware that exports a conforming implementation of the interfaces in the EFI specification.

There are many possible strategies for implementing the EFI specification. One strategy is to layer
code that implements the EFI interfaces over a conventional BIOS or System Abstraction Layer
(SAL), as demonstrated by the EFI Sample Implementation available from the Intel web site. In
contrast, the Framework architecture describes a design for a complete replacement for
conventional firmware stacks.

While the Framework is but one possible implementation of the EFI specification, Intel views the
Framework as the implementation of choice for firmware that can support systems based on all
members of the A family.

Version 0.9 September 2003 13
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1.5 Architectural and Operational Overview
Figure 1-1 shows a block diagram view of the Framework design. The architecture represents a
structured implementation composed primarily of the following:

e Foundation code that binds the pieces together
e Modular elements of code that perform the functional job of enumerating and initializing

the platform
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Figure 1-1. Framework Block Diagram Level Architecture

The Framework is further divided into two main parts that operate sequentially:

e Pre-EFI Initialization (PEI) phase

e Driver Execution Environment (DXE) phase

A primary design goal for the Framework architecture is to take advantage of contemporary
computer science design principles for software. As a result, a key objective for the design is to

place as much of the code as possible in structured, high-level language code and in an architectural
structure that follows a coherent object model of the devices and services required in a platform.
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Because the high-level language of choice, C, requires memory in the shape of a stack, the first task
of the design is to find and initialize at least as much memory as is required to instantiate a stack. It
is up to a given implementation based on the Framework whether the amount of memory initialized
before DXE includes all or only some portion of the physical memory present in a system. The
objective of memory discovery in PEI is to enable C code to be started as close to the reset vector
as is practical on any given system. The division between PEI and DXE is hinged on this principle.

PEI represents the smallest possible amount of code that is able to find and initialize memory and
other resources that are needed to switch execution into C language code. It consists of the
following:

e Foundation “glue code” labeled as Pre-EFI Initialization (PEI) Spec in Figure 1-1 above
e A collection of modules that are specific to the processor, chipset, and board layout

In practice, the architecture allows for an arbitrary number of modules. Because the PEI code does
the minimum work that is necessary to discover and initialize memory, much of the chipset and
other component initialization is deferred until the DXE environment is up and running. Early PEI
code is likely written in machine-native assembly code. As a result, it contains the least portable
components of any implementation based on the Framework architecture. Clearly, keeping this
code to a minimum supports the following goals:

e Maximize the potential to reuse code between platforms.
e FEase the maintenance of Framework code.

Once memory is discovered, PEI marshals a set of handoff state information describing the
platform resource map and then initializes and jumps to the DXE Foundation code.

DXE consists of the high-level language portion of the Framework’s Foundation code. The code is
responsible for materializing intrinsic services such as memory allocation or timer tick that are
needed to support generalized modular pieces of code known as EFI drivers.

@ NOTE

1t is important to note that “EFI driver” in this context has no connection to OS-present drivers for
Windows*, Linux*, or any other conventional OS. In the Framework, the term “EFI driver” is
used to refer to a modular piece of code that runs in the DXE phase.

The EFI drivers contain most of the code in the platform that fully enumerates and initializes the
platform components, as well as managing the process of handing control to the final operating
environment for the system.

EFTI drivers in DXE may manage hardware devices or produce services for the preboot
environment. The driver model for the Framework is the same driver model that is defined as part
of the EFI 1.10 Specification, although there are some additional packaging features available for
managing EFI drivers that are used in an implementation based on the Framework.

Figure 1-1 shows a number of heavy red lines. These lines represent defined interfaces that are
published to promote interoperability of components that may potentially be provided by multiple
silicon or add-in component vendors. The top-most line represents the interface presented to OSs.
Because firmware based on the Framework is an implementation of the EFI specification, this line
therefore represents that specification where the underlying implementation of the services is

Version 0.9 September 2003 15
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provided by a combination of drivers and intrinsic services that is materialized by the DXE portion
of the Framework’s Foundation code.

The diagram should not be viewed as “to scale” with respect the component areas. Typical
implementations of the Framework architecture will contain relatively far more EFI driver code and
module code than Foundation code. Over time, the Foundation code is expected to be stable code
that binds the other components together and ensures interoperability for components. The
Framework architecture is designed to promote innovation by providing a rich environment for
writers of drivers that operate in the preboot DXE environment.

Figure 1-2 shows the phases that a platform with Framework-based firmware goes through on a
cold boot. This chapter covers the transition from the PEI to the DXE phase, the DXE phase, and
the DXE phase’s interaction with the BDS phase.

Pre Exposed Previous
verrer |8 | [ | ey
Framework
!l APTs now
Transient OS limited
Environment
u
Transient OS
Boot Loader

W

Boot Services
Runtime Services g Environment

r

Security Pre-EFl Driver Boot Transient Runtime After-
(SEC) | Initialization | Execution Device System Load (RT) life
Environment| Environment | Selection (TSL) (AL)
(PEI) (DXE) (BDS)

Power on—¥ [ . . Platform initialization . . ]——[.... OS boot . . . . ] =—————— Shutdown

Figure 1-2. Framework Firmware Phases

The Security (SEC) phase supports inspection of the very first opcode that will be executed on the
system to ensure that the chosen platform firmware image has not been tampered with. This
capability will usually require hardware support that is not typically available in processor and
chipset components at the time of writing. However, the architecture provides hooks to support this
capability presuming that it may be added in future products.
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1.6

The PEI phase discovers memory and prepares a resource map for the DXE phase. It is important
to note that PEI-to-DXE handoff is a one-way transition—once the initial program loader for DXE
is complete, the PEI code is no longer available for use on the platform and DXE becomes a self-
contained operating environment.

One of the early tasks of DXE is to find and load the boot manager. This component is responsible
for determining what OS (or equivalent) is to be booted. In doing so, it also identifies the required
boot devices. Once it knows the intended boot devices, the DXE Dispatcher can find and load the
appropriate EFI drivers for that set of devices. Implementations may choose to load all possible
EFI drivers or to optimize boot time by loading only those needed for the current boot operation.

After DXE, the Framework has additional phases that cover interaction with the operating system
in boot and runtime. The Transient System Load (TSL) phase allows service interfaces to be
available to OS loaders before the platform is taken over completely by the OS kernel. The
Runtime (RT) phase provides a means to have certain EFI drivers be present during OS execution
to support the OS as required. The architecture also contains a “post OS” environment, the
Afterlife (AL) phase that is designed to allow platform firmware to execute after the OS in the case
of voluntary or involuntary termination of the OS.

The graphic shows one flow of execution from power-on through shutdown. It is important to note
that there are several possible execution paths through the Framework design to cope with such
things as power management transitions and the like. While these other paths are not illustrated in
Figure 1-2, they are described in more detail in the chapters that follow.

The Framework and Industry Specifications

The Framework was designed in such a way that it could be a complete replacement for existing
firmware designs such as BIOS (IA-32) and SAL (Intel® Itanium® processor family). As such,
most of the functional capabilities of the resulting firmware need to be the same as those presented
by existing firmware solutions. This requirement is realized by providing implementations of EFI
drivers or framework interfaces that conform to the standards and specifications established for
those capabilities.

For example, Framework-based implementations will completely comply with the ACPI
specification, but the construction of that support will be fundamentally different from ACPI
implementations in BIOS code.

In addition, as detailed in chapter 12, “Legacy Compatibility,” the Framework design includes a
provision for conforming implementations to deliver compatibility with a conventional BIOS. The
compatibility is centered on supporting OSs and applications that would normally interact with the
“runtime” portion of a conventional BIOS. An implementation of the Framework that includes this
capability will therefore conform to industry specifications that define the operation of BIOS
“runtime” services, table, and data area interfaces.

See the “References” section on page 113 for a complete list of the standards and specifications that
are required for establishing these capabilities.
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1.7 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

18

Plain text

Bold

Italic

BOLD Monospace

Italic Monospace

The normal text typeface is used for the vast majority of the descriptive
text in the specification.

In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

In text, an [talic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

In code or in text, words in Ttalic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

See the “Glossary” section on page 107 for definitions of terms and abbreviations that are used in
this document or that might be useful in understanding the descriptions presented in this document.
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Security (SEC) Phase

2.1

2.2

2.3

Introduction

The Security (SEC) phase in the Framework architecture represents the root of trust in a platform
that had core root-of-trust maintenance from the reset vector. The SEC phase begins with power-on
and includes the first few steps that are required to find and authenticate the PEI Foundation before
launching it. The objective is to ensure that the first code executed by the processor is trustworthy
and that this code has sufficient resources in and of itself to determine the trustworthiness of any
subsequent code. What “authenticate” and “trustworthy” mean can evolve over time and vary
across platforms.

Phase Prerequisites

There are no software prerequisites for the SEC phase. The SEC phase is the first code executed
after power-on. However, the SEC code will require that the processor have some prior knowledge
of the platform configuration and some minimum level of hardware support.

For Framework-conformant systems, this phase leverages a processor capability to produce some
temporary memory. This memory might be the processor cache, system static RAM (SRAM), or
some other system capability that allows early access to some minimum amount (at least 4 KB) of
temporary memory. In addition, this phase will have the a priori knowledge of where this early
memory can be mapped and the location of the Boot Firmware Volume (BFV). It is from this BFV
that the SEC code will discover and possibly authenticate the PEI Foundation. This authentication
can be done in the software only or entail the use of additional hardware.

Handoff Requirements

The SEC code is required to hand information to the PEI Foundation. This handoff information
includes the results of the processor built-in self test (BIST) for platforms that collect this
information, the address of the BFV, the size of the initial memory, and a possibly nonzero list of
PEIM-to-PEIM descriptors. The latter services allow for passing services into the PEI Foundation,
including but not limited to the verification service used by the SEC to authenticate the PEI
Foundation, pointers to state information such as SAL-A hand-off, and so on.
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231 1A-32

In 32-bit Intel architecture (IA-32), the SEC component is responsible for receiving the results of
the processor BIST on platforms that perform BIST. The processor BIST is the integrity checking
of the processor behavior by the microcode. In addition, the SEC phase is responsible for
initializing some early memory store. On a processor that uses the processor cache as memory, the
SEC needs to program the Memory Type Range Registers (MTRRs) to window a region of the
address space and program the processor control registers to have the processor cache operate in
no-eviction mode. This capability is a means of using the cache as a memory store for stack and
data usage. An alternate SEC implementation could use SRAM on the motherboard, chipset, or
another location for this store, but the invariant is that it needs to be memory that can be used in
conjunction with the permanent memory.

The early memory region, size, and location needs to be passed into the PEI Foundation, along with
the PEIM-to-PEIM Interfaces (PPIs) in SEC and BIST results, if any.

2.3.2 Intel® Itanium® Processor Family

The Itanium processor family is similar to [A-32 in that it is also responsible for ascertaining the
processor BIST information and initializing the early memory store. To determine the BIST
information, the Processor Abstraction Layer (PAL) hand-off state is used. To initialize the early
memory store, if the platform uses the processor cache as memory, there is a distinguished PAL call
that must be made to initialize the cache for this early, no-eviction mode usage. In the Itanium
processor family, the no-eviction mode supports caching of the ROM in addition to the stack and
data store. Also, the no-eviction mode on Itanium processors supports multiprocessor (MP)
execution with each processor having a discontiguous mapped region for the no-eviction range of
memory. The PAL-A code is also encapsulated in the Itanium® architecture variant of SEC. The
PAL-A code is the equivalent of IA-32 processor microcode for the Itanium processor family.

2.4 Services

In addition, the SEC phase has a table that includes where the temporary memory is mapped. This
table is important in that a given vendor may have a particular region of the address space that
would be “safer” for this mode of execution. By “safe” we mean that the bus cycle would not cause
errant behavior in the chipset if there is an unexpected write-back from the early-memory space that
was using the processor cache in no-eviction mode.

As noted above, the SEC phase passes in a possibly non-NULL PEI PPI descriptor list. A set of
services that might be conveyed into the PEI Foundation from the SEC phase could also include the
Security PPI and a Trusted Computing Group (TCG) PPI for Hash-Extend and event logging, in
addition to the information and verification services. These services allow the Core Root-of-Trust
Module (CRTM) to have the necessary services to authenticate the PEI Foundation and allow the
PEI Foundation to reuse these services using PPI invocations that call back into SEC, as opposed to
duplicating them in the implementation of the PEI Foundation.

20 September 2003 Version 0.9
Draft for Review



In tel Security (SEC) Phase

2.5 Security Use Models

The SEC component allows for an array of security use models, which are described in the
following sections.

2.51 Core Root-of-Trust Module (CRTM)

The SEC component is packaged as a Firmware File System (FFS) file of type Volume Top File
(VTF) to ensure that it is aligned at the top of the 4 GB address space to decode the reset vector on
IA-32 and Itanium processor family class systems. For Intel® processors based on Intel® XScale™
technology, the file may be at address zero, but the key requirement is to be at the address where
the initial processor code fetch occurs in response to a reset.

As a result of this initial execution, the code operating in the SEC phase represents the CRTM in
the Framework firmware. This representation is in contrast to a traditional PC-AT* BIOS where
the BIOS boot-block is often referred to as the CRTM. This CRTM distinction is important in that
it represents the Trusted Computing Base (TCB), or the smallest component that would need to
have third-party scrutiny and examination for purposes of a security audit, for example. The code
will need this scrutiny if there is a chain-of-trust model for the platform, and this code is the first to
execute therein. Other components that would be part of this TCB and are described later might
include the PEI Foundation, DXE Foundation, and associated Security Architectural Protocol.

2.5.2 Attested Boot

For an attested boot scheme, the SEC component could provide the CRTM. Therein, the SEC
phase would have knowledge about a security coprocessor, such as the Trusted Processing Module
(TPM) in TCG. The SEC component would perform the Hash-Extend operation on both itself and
the subsequent module to which it passes control, namely the PEI Foundation. In addition, a
portion of the early memory can be used as the beginning of the event log to describe the attestation
operations.

2.5.3 Processor Root-of-Trust Key and RAM

In the future, if a public/private key pair representing a “root of trust” is embedded in the
processor, the SEC module would be the module signed with the private key so that the microcode
could verify the SEC file against the associated public key on a given reset. This design would
provide a true root-of-trust maintenance handoff in which the transitive trust relationship would
extend from the processor, wherein microcode could be the CRTM and the associated Framework
code in SEC would inherit the thread of execution. If this trust relationship were not satisfied by
the SEC with respect to the processor, such as having the signature verification fail, the processor
would engender some recovery condition or cease fetching the ensuing opcodes from the
firmware store.
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Pre-EFI Initialization (PEI) Phase

3.1

311

Introduction

The Pre-EFI Initialization (PEI) phase provides a standardized method of loading and invoking
specific initial configuration routines for the processor, chipset, and motherboard. The PEI phase
occurs after the Security (SEC) phase. The primary purpose of code operating in this phase is to
initialize enough of the system to allow instantiation of the Driver Execution Environment (DXE)
phase. At a minimum, the PEI phase is responsible for determining the system boot path and
initializing and describing a minimum amount of system RAM and firmware volume(s) that contain
the DXE Foundation and DXE Architectural Protocols.

Scope

The PEI phase is responsible for initializing enough of the system to provide a stable base for
follow-on phases. It is also responsible for detecting and recovering from corruption of the
firmware storage space.

A 2000-era PC generally starts execution in a very primitive state. Processors might need updates
to their internal microcode; the chipset (the chips that provide the interface between processors and
the other major components of the system) require considerable initialization; and RAM requires
sizing, location, and other initialization. The PEI phase is responsible for initializing these basic
subsystems. The PEI phase is intended to provide a simple infrastructure by which a limited set of
tasks can easily be accomplished to transition to the more advanced DXE phase. The PEI phase is
intended to be responsible for only a very small subset of tasks that are required to boot the
platform; in other words, it should perform only the minimal tasks that are required to start DXE.
As improvements in the hardware occur, some of these tasks may migrate out of the PEI phase

of execution.
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3.1.2 Rationale

The design for PEI is essentially a miniature version of DXE that addresses many of the same
issues. The PEI phase consists of several parts:

e A PEI Foundation

e One or more Pre-EFI Initialization Modules (PEIMs)

The goal is for the PEI Foundation to remain relatively constant for a particular processor
architecture and to support add-in modules from various vendors for particular processors, chipsets,

platforms, and other components. These modules usually cannot be coded without some interaction
between one another and, even if they could, it would be inefficient to do so.

PEI is unlike DXE in that DXE assumes that reasonable amounts of permanent system RAM are
present and available for use. PEI instead assumes that only a limited amount of temporary RAM
exists and that it could be reconfigured for other uses during the PEI phase after permanent system
RAM has been initialized. As such, PEI does not have the rich feature set that DXE does. The
following are the most obvious examples of this difference:

e DXE has a rich database of loaded images and protocols bound to those images.
e PEI lacks a rich module hierarchy such as the DXE driver model.

3.1.3 Overview

24

The PEI phase consists of some Foundation code and specialized drivers known as PEIMs that
customize the PEI phase operations to the platform. It is the responsibility of the Foundation code
to dispatch the plug-ins in a sequenced order and provide basic services. The PEIMs are analogous
to DXE drivers and generally correspond to the components being initialized. It is expected that
common practice will be that the vendor of the component will provide the PEIM, possibly in
source form so the customer can quickly debug integration problems.

The implementation of the PEI phase is more dependent on the processor architecture than any
other Framework phase. In particular, the more resources that the processor provides at its initial or
near initial state, the richer the PEI environment will be. As such, there are several parts of the
following discussion that note requirements for the architecture but are otherwise left less
completely defined because they are processor architecture specific.
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3.2 Phase Prerequisites

Sections 3.2.1 through 3.2.3 describe the prerequisites necessary for the successful completion of
the PEI phase.

3.21 Temporary RAM

The PEI Foundation requires that the SEC phase initialize a minimum amount of scratch pad RAM
that can be used by the PEI phase as a data store until system memory has been fully initialized.
This scratch pad RAM should have access properties similar to normal system RAM—through
memory cycles on the front side bus, for example. After system memory is fully initialized, the
temporary RAM may be reconfigured for other uses. Typical provision for the temporary RAM is
an architectural mode of the processor’s internal caches.

3.2.2 Boot Firmware Volume

The Boot Firmware Volume (BFV) contains the PEI Foundation and PEIMs. It must appear in the
memory address space of the system without prior firmware intervention and will typically contain
the reset vector for the processor architecture.

The contents of the BFV follow the format of the EFI flash file system. The PEI Foundation will
follow the EFI flash file system format to find PEIMs in the BFV. A platform-specific PEIM may
inform the PEI Foundation of the location of other firmware volumes in the system, which allows
the PEI Foundation to find PEIMs in other firmware volumes. The PEI Foundation and PEIMs are
named by unique IDs in the EFI flash file system.

The PEI Foundation and some PEIMs required for recovery must either be locked into a
nonupdateable BFV or be able to be updated using a fault-tolerant mechanism. The EFI flash file
system provides error recovery; if the system halts at any point, either the old (preupdate) PEIM(s)
or the newly updated PEIM(s) are entirely valid and the PEI Foundation can determine which

is valid.

3.2.3 Security Primitives

The SEC phase provides an interface to the PEI Foundation to perform verification operations. To
continue the root of trust, the PEI Foundation will use this mechanism to validate various PEIMs.
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3.3 Concepts

3.31

26

Sections 3.3.1 through 3.3.6 describe the concepts in the PEI phase design.

PEI Foundation

The PEI Foundation is a single binary executable that is compiled to function with each processor
architecture. It performs two main functions:
e Dispatching PEIMs
e Providing a set of common core services used by PEIMs
The PEI Dispatcher’s job is to hand control to the PEIMs in an orderly manner. The common core
services are provided through a service table referred to as the PEI Services Table. These services
do the following:
e Assist in PEIM-to-PEIM communication.
e Abstract management of the temporary RAM.
e Provide common functions to assist the PEIMs in the following:
— Finding other files in the FFS
— Reporting status codes
— Preparing the handoff state for the next phase of the Framework

When the SEC phase is complete, SEC invokes the PEI Foundation and provides the PEI
Foundation with several parameters:

e The location and size of the BFV so that the PEI Foundation knows where to look for the initial
set of PEIMs.

e A minimum amount of temporary RAM that the PEI phase can use

e A verification service callback to allow the PEI Foundation to verify that PEIMs that it
discovers are authenticated to run before the PEI Foundation dispatches them

The PEI Foundation assists PEIMs in communicating with each other. The PEI Foundation
maintains a database of registered interfaces for the PEIMs. These interfaces are called PEIM-to-
PEIM Interfaces (PPIs). The PEI Foundation provides the interfaces to allow PEIMs to register
PPIs and to be notified (called back) when another PEIM installs a PPIL.

The PEI Dispatcher consists of a single phase. It is during this phase that the PEI Foundation
examines each file in the firmware volumes that contain files of type PEIM. It examines the
dependency expression (depex) within each firmware file to decide if a PEIM can run. A
dependency expression is code associated with each driver that describes the dependencies that
must be satisfied for that driver to run. The binary encoding of dependency expressions for PEIMs
is the same as that of dependency expressions associated with a DXE driver.
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3.3.2 Pre-EFl Initialization Modules (PEIMs)

Pre-EFI Initialization Modules (PEIMs) are executable binaries that encapsulate processor, chipset,
device, or other platform-specific functionality. PEIMs may provide interface(s) that allow other
PEIMs or the PEI Foundation to communicate with the PEIM or the hardware for which the PEIM
abstracts. PEIMs are separately built binary modules that typically reside in ROM and are therefore
uncompressed. A small subset of PEIMs exist that may run from RAM for performance reasons.
These PEIMs will reside in ROM in a compressed format. PEIMs that reside in ROM are execute-
in-place modules that may consist of either position-independent code or position-dependent code
with relocation information.

3.3.3 PEIl Services

The PEI Foundation establishes a system table named the PEI Services Table that is visible to all
PEIMs in the system. A PEI service is defined as a function, command, or other capability that is
manifested by the PEI Foundation when that service’s initialization requirements are met. Because
the PEI phase has no permanent memory available until nearly the end of the phase, the range of
services created during the PEI phase cannot be as rich as those created during later phases.
Because the location of the PEI Foundation and its temporary RAM is not known at build time, a
pointer to the PEI Services Table is passed into each PEIM’s entry point and also to part of each
PPIL. The PEI Foundation provides the following classes of services:

e PPI Services: Manages PPIs to facilitate intermodule calls between PEIMs.
Interfaces are installed and tracked on a database maintained in
temporary RAM.

e Boot Mode Services: Manages the boot mode (S3, S5, normal boot, diagnostics, etc.)
of the system.

e HOB Services: Creates data structures called Hand-Off Blocks (HOBs) that are

used to pass information to the next phase of the Framework.

e Firmware Volume Services: Walks the FFS in firmware volumes to find PEIMs and other
firmware files in the flash device.

e PEI Memory Services: Provides a collection of memory management services for use
both before and after permanent memory has been discovered.
e Status Code Services: Common progress and error code reporting services, i.e. port
080h or a serial port for simple text output for debug.
e Reset Services: Provides a common means by which to initiate a restart of the
system.
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3.3.4 PEIM-to-PEIM Interfaces (PPlIs)

PEIMs may invoke other PEIMs through interfaces named PEIM-to-PEIM Interfaces (PPIs). The
interfaces themselves are named using Globally Unique Identifiers (GUIDs) to allow the
independent development of modules and their defined interfaces without naming collision. A
GUID is a 128-bit value used to differentiate services and structures in the boot services
environment (also see section 11.2.1). The PPIs are defined as structures that may contain
functions, data, or a combination of the two. PEIMs must register their PPIs with the PEI
Foundation, which manages a database of registered PPIs. A PEIM that wants to use a specific PPI
can then query the PEI Foundation to find the interface it needs. There are two types of PPIs:

e Services
e Notifications

PPI services allow a PEIM to provide functions or data for another PEIM to use. PPI notifications
allow a PEIM to register for a callback when another PPI is registered with the PEI Foundation.

3.3.5 Simple Heap

The PEI Foundation uses temporary RAM to provide a simple heap store before permanent system
memory is installed. PEIMs may request allocations from the heap, but there is no mechanism to
free memory from the heap. Once permanent memory is installed, the heap is relocated to
permanent system memory, but the PEI Foundation does not fix up existing data within the heap.
Therefore, a PEIM cannot store pointers in the heap when the target is other data within the heap
(i.e. linked lists).

3.3.6 Hand-Off Blocks (HOBs)

28

Hand-Off Blocks (HOBs) are the architectural mechanism for passing system state information
from the PEI phase to the DXE phase in the Framework architecture. A HOB is simply a data
structure (cell) in memory that contains a header and data section. The header definition is
common for all HOBs and allows any code using this definition to know two items:

e The format of the data section
e The total size of the HOB

HOBs are allocated sequentially in the memory that is available to PEIMs after permanent memory
has been installed. There are a series of core services that facilitate HOB manipulation, as noted in
section 3.3.3. This sequential list of HOBs in memory will be referred to as the HOB list. The first
HOB in the HOB list must be the Phase Handoff Information Table (PHIT) HOB that describes the
physical memory used by the PEI phase and the boot mode discovered during the PEI phase.

Only PEI components are allowed to make additions or changes to HOBs. Once the HOB list is
passed into DXE, it is effectively read-only for DXE components. The ramifications of a read-only
HORB list for DXE is that handoff information, such as boot mode, must be handled in a unique
fashion; if DXE were to engender a recovery condition, it would not update the boot mode but
instead would implement the action using a special type of reset call. The HOB list contains system
state data at the time of PEI-to-DXE handoff and does not represent the current system state during
DXE. DXE components should use services that are defined for DXE to get the current system
state instead of parsing the HOB list.
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3.4

As a guideline, it is expected that HOBs passed between PEI and DXE will follow a one producer—
to—one consumer model. In other words, a PEIM will produce a HOB in PEI, and a DXE Driver
will consume that HOB and pass information associated with that HOB to other DXE components
that need the information. The methods that the DXE Driver uses to provide that information to
other DXE components should follow mechanisms defined by the DXE architecture.

Operation

PEI phase operation consists of invoking the PEI Foundation, dispatching all PEIMs in an orderly
manner, and discovering and invoking the next phase. During PEI Foundation initialization, the
PEI Foundation initializes the internal data areas and functions that are needed to provide the
common PEI services to PEIMs. During PEIM dispatch, the PEI Dispatcher traverses the firmware
volume(s) and discovers PEIMs according to the flash file system definition. The PEI Dispatcher
then dispatches PEIMs if the following criteria are met:

e The PEIM has not already been invoked.

e The PEIM file is correctly formatted.

e The PEIM is trustworthy.

e The PEIM’s dependency requirements have been met.

After dispatching a PEIM, the PEI Dispatcher will continue traversing the firmware volume(s) until
either all discovered PEIMs have been invoked or no more PEIMs can be invoked because the
requirements listed above cannot be met for any PEIMs. Once this condition has been reached, the

PEI Dispatcher’s job is complete and it invokes an architectural PPI for starting the next phase of
the Framework, the DXE Initial Program Load (IPL) PPI.

3.41 Dependency Expressions

The sequencing of PEIMs is determined by evaluating a dependency expression associated with
each PEIM. This Boolean expression describes the requirements that are necessary for that PEIM
to run, which imposes a weak ordering on the PEIMs. Within this weak ordering, the PEIMs may
be initialized in any order. The GUIDs of PPIs and the GUIDs of file names are referenced in the
dependency expression. The dependency expression is a representative syntax of operations that
can be performed on a plurality of dependencies to determine whether the PEIM can be run. The
PEI Foundation evaluates this dependency expression against an internal database of run PEIMs
and registered PPIs. Operations that may be performed on dependencies are the logical operators
AND, OR, and NOT and the sequencing operators BEFORE and AFTER.

3.4.2 Verification / Authentication

The PEI Foundation will be stateless with respect to security. Instead, security decisions are
assigned to platform-specific components. The two components of interest that abstract security
include the Security PPI and a Verification PPI. The purpose of the Verification PPI is to check the
authentication status of a given PEIM. The mechanism used therein may include digital signature
verification, a simple checksum, or some other OEM-specific mechanism. The result of this
verification will be returned to the PEI Foundation, which in turn will convey the result to the
Security PPI. The Security PPI will decide whether to defer execution of the PEIM or to let the
execution occur. In addition, the Security PPI provider may choose to generate an attestation log
entry of the dispatched PEIM or provide some other security exception.
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3.4.3 PEIM Execution

PEIMs run to completion when invoked by the PEI Foundation. Each PEIM is invoked only once
and must perform its job with that invocation and install other PPIs to allow other PEIMs to call it
as necessary. PEIMs may also register for a notification callback if it is necessary for the PEIM to
get control again after another PEIM has run.

3.44 Memory Discovery

Memory discovery is an important architectural event during the PEI phase. When a PEIM has
successfully discovered, initialized, and tested a contiguous range of system RAM, it reports this
RAM to the PEI Foundation. When that PEIM exits, the PEI Foundation will migrate PEI usage
of the temporary RAM to real system RAM, which involves the following two tasks:

e The PEI Foundation must switch PEI stack usage from temporary RAM to permanent
system memory.

e The PEI Foundation must migrate the simple heap allocated by PEIMs (including HOBs) to
real system RAM.

Once this process is complete, the PEI Foundation installs an architectural PPI to notify any
interested PEIMs that real system memory has been installed. This notification allows PEIMs that
ran before memory was installed to be called back so that they can complete necessary tasks—such
as building HOBs for the next phase of DXE—in real system memory.

3.4.5 Intel Itanium Processor MP Considerations
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This section gives special consideration to the PEI phase operation in Itanium processor family
multiprocessor (MP) systems. In Itanium®-based systems, all of the processors in the system start
up simultaneously and execute the PAL initialization code that is provided by the processor vendor.
Then all the processors call into the Framework start-up code with a request for recovery check.
The start-up code allocates different chunks of temporary memory for each of the active processors
and sets up stack and backing store pointers in the allocated temporary memory. The temporary
memory could be a part of the processor cache (cache as RAM), which can be configured by
invoking a PAL call. The start-up code then starts dispatching PEIMs on each of these processors.
One of the early PEIMs that runs in MP mode is the PEIM that selects one of the processors as the
boot-strap processor (BSP) for running the PEIM stage of the booting.

This BSP continues to run PEIMs until it finds permanent memory and installs the memory with the
PEI Foundation. Then the BSP wakes up all the processors to determine their health and PAL
compatibility status. If none of these checks warrants a recovery of the firmware, the processors
are returned to the PAL for more processor initialization and a normal boot.

The Framework start-up code also gets triggered in an Itanium-based system whenever an INIT or a
Machine Check Architecture (MCA) event occurs in the system. Under such conditions, the PAL
code outputs status codes and a buffer called the minimum state buffer. A Framework-specific data
pointer that points to the INIT and MCA code data area is attached to this minimum state buffer,
which contains details of the code to be executed upon INIT and MCA events. The buffer also
holds some important variables needed by the start-up code to make decisions during these special
hardware events.
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3.4.6 Recovery

Recovery is the process of reconstituting a system’s firmware devices when they have become
corrupted. The corruption can be caused by various mechanisms. Most firmware volumes on
nonvolatile storage devices are managed as blocks. If the system loses power while a block or
semantically bound blocks are being updated, the storage might become invalid. On the other hand,
the device might become corrupted by an errant program or by errant hardware. Assuming PEI
lives in a fault-tolerant block, it can support a recovery mode dispatch.

A PEIM or the PEI Foundation itself can discover the need to do recovery. A PEIM can check a
“force recovery” jumper, for example, to detect a need for recovery. The PEI Foundation might
discover that a particular PEIM does not validate correctly or that an entire firmware volume has
become corrupted.

The concept behind recovery is that enough of the system firmware is preserved so that the system
can boot to a point that it can read a copy of the data that was lost from chosen peripherals and then
reprogram the firmware volume with that data.

Preservation of the recovery firmware is a function of the way the firmware volume store is
managed. In the EFI flash file system, PEIMs required for recovery will be marked as such. The
firmware volume store architecture must then preserve marked items, either by making them
unalterable (possibly with hardware support) or protect them using a fault-tolerant update process.

Until recovery mode has been discovered, the PEI Dispatcher proceeds as normal. If it encounters
PEIMs that have been corrupted (for example, by receiving an incorrect hash value), it must change
the boot mode to “recovery.” Once set to recovery, other PEIMs must not change it to one of the
other states. After the PEI Dispatcher has discovered that the system is in recovery mode, it will
restart itself, dispatching only those PEIMs that are required for recovery. It is also possible for a
PEIM to detect a catastrophic condition or to be a forced-recovery detect PEIM and to inform the
PEI Dispatcher that it needs to proceed with a recovery dispatch. The recovery dispatch is
completed when a PEIM finds a recovery firmware volume on a recovery media and the DXE
Foundation is started from that firmware volume. Drivers within that DXE firmware volume can
perform the recovery process.

3.4.7 S3 Resume

The PEI phase on S3 resume (save-to-RAM resume) differs in several fundamental ways from the

PEI phase on a normal boot. The differences are as follows:

e The memory subsection is restored to its presleep state rather than initialized.

e System memory owned by the OS is not used by either the PEI Foundation or the PEIMs.

e The DXE phase is not dispatched on a resume because it would corrupt memory.

e The PEIM that would normally dispatch the DXE phase instead uses a special Hardware Save
Table to restore fundamental hardware back to a boot configuration. After restoring the
hardware, the PEIM passes control to the OS-supplied resume vector.

e The DXE and later phases during a normal boot save enough information in the Framework
reserved memory or a firmware volume area for hardware to be restored to a state that the OS
can use to restore devices. This saved information is located in the Hardware Save Table.
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4
Driver Execution Environment (DXE) Phase

4.1 Introduction

The Driver Execution Environment (DXE) phase contains an implementation of EFI that is
compliant with the EFI 1.10 Specification. As a result, both the DXE Foundation and DXE drivers
share many of the attributes of EFI images. The DXE phase is the phase where most of the system
initialization is performed. The Pre-EFI Initialization (PEI) phase is responsible for initializing
permanent memory in the platform so the DXE phase can be loaded and executed. The state of the
system at the end of the PEI phase is passed to the DXE phase through a list of position-
independent data structures called Hand-Off Blocks (HOBs).

There are several components in the DXE phase, as follows:

e DXE Foundation
e DXE Dispatcher
e A set of DXE drivers

The DXE Foundation produces a set of Boot Services, Runtime Services, and DXE Services. The
DXE Dispatcher is responsible for discovering and executing DXE drivers in the correct order. The
DXE drivers are responsible for initializing the processor, chipset, and platform components as well
as providing software abstractions for console and boot devices. These components work together
to initialize the platform and provide the services required to boot an OS. The DXE and Boot
Device Selection (BDS) phases work together to establish consoles and attempt the booting of OSs.
The DXE phase is terminated when an OS successfully begins its boot process (i.e., the BDS phase
starts). Only the runtime services provided by the DXE Foundation and services provided by
runtime DXE drivers are allowed to persist into the OS runtime environment. The result of DXE is
the presentation of a fully formed EFI interface.

Figure 4-1 shows the phases that a platform with Framework firmware goes through on a cold boot.
This chapter covers the following:

e Transition from the PEI to the DXE phase

e The DXE phase

e The DXE phase’s interaction with the BDS phase
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4.2 DXE Foundation

The DXE Foundation is designed to be completely portable with no processor, chipset, or platform
dependencies. This portability is accomplished by designing in several features:

e The DXE Foundation depends only upon a HOB list for its initial state. This single
dependency means that the DXE Foundation does not depend on any services from a previous
phase, so all the prior phases can be unloaded once the HOB list is passed to the DXE
Foundation.

e The DXE Foundation does not contain any hard-coded addresses. As a result, the DXE
Foundation can be loaded anywhere in physical memory, and it can function correctly no
matter where physical memory or where firmware volumes are located in the processor’s
physical address space.

e The DXE Foundation does not contain any processor-specific, chipset-specific, or
platform-specific information. Instead, the DXE Foundation is abstracted from the system
hardware through a set of architectural protocol interfaces. These architectural protocol
interfaces are produced by a set of DXE drivers that are invoked by the DXE Dispatcher.

The DXE Foundation must produce the EFI System Table and its associated set of EFI Boot
Services and EFI Runtime Services. The DXE Foundation also contains the DXE Dispatcher,
whose main purpose is to discover and execute DXE drivers stored in firmware volumes. The
order in which DXE drivers are executed is determined by a combination of the optional a priori
file (see section 4.3.1) and the set of dependency expressions that are associated with the DXE
drivers. The firmware volume file format allows dependency expressions to be packaged with the
executable DXE driver image. DXE drivers utilize a PE/COFF image format, so the DXE
Dispatcher must also contain a PE/COFF loader to load and execute DXE drivers.

The DXE Foundation must also maintain a handle database. A handle database is a list of one or
more handles, and a handle is a list of one or more unique protocol GUIDs. A protocol is a
software abstraction for a set of services. Some protocols abstract I/O devices, and other protocols
abstract a common set of system services. A protocol typically contains a set of APIs and some
number of data fields. Every protocol is named by GUID, and the DXE Foundation produces
services that allow protocols to be registered in the handle database. As the DXE Dispatcher
executes DXE drivers, additional protocols will be added to the handle database including the DXE
Architectural Protocols that are used to abstract the DXE Foundation from platform-specific details.
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421 Hand-Off Block (HOB) List

The HOB list contains all the information that the DXE Foundation requires to produce its
memory-based services. The HOB list contains information on the boot mode, the processor’s
instruction set, and the memory that was discovered in the PEI phase. It also contains a description
of the system memory that was initialized by the PEI phase, along with information about the
firmware devices that were discovered in the PEI phase. The firmware device information includes
the system memory locations of the firmware devices and of the firmware volumes that are
contained within those firmware devices. The firmware volumes may contain DXE drivers, and the
DXE Dispatcher is responsible for loading and executing the DXE drivers that are discovered in
those firmware volumes. Finally, the HOB list may contain the I/O resources and memory-mapped
I/O resources that were discovered in the PEI phase.

Figure 4-2 shows an example HOB list. The first entry in the HOB list is always the Phase Handoff
Information Table (PHIT) HOB that contains the boot mode. The rest of the HOB list entries can
appear in any order. This example shows the different types of system resources that can be
described in a HOB list. The most important ones to the DXE Foundation are the HOBs that
describe system memory and the HOBs that describe firmware volumes. A HOB list is always
terminated by an end-of-list HOB. The one additional HOB type that is not shown in the figure is
the GUID extension HOB that allows a PEIM to pass private data to a DXE driver. Only the DXE
driver that recognizes the GUID value in the GUID extension HOB will be able to understand the
data in that HOB. The HOB entries are all designed to be position independent. This independence
allows the DXE Foundation to relocate the HOB list to a different location if it is not suitable to the
DXE Foundation.

I I I I I ]
System 110 MO Finmwame Finmware DXE
Mermony Resmroes Resources Devices YVolusmes Drivers

. N t S E—
PHIT HOB HOB HOB HOB HOB ' DKE
Hm e i i e . D"' ers

Figure 4-2. HOB List

4.2.2 DXE Architectural Protocols
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The DXE Foundation is abstracted from the platform hardware through a set of DXE Architectural
Protocols. These protocols function just like other protocols in every way, except that the DXE
Foundation consumes these protocols to produce the EFI Boot Services and EFI Runtime Services.
DXE drivers that are loaded from firmware volumes produce the DXE Architectural Protocols.
This design means that the DXE Foundation must have enough services to load and start DXE
drivers before even a single DXE driver is executed.

The DXE Foundation is passed a HOB list that must contain a description of some amount of
system memory and at least one firmware volume. The system memory descriptors in the HOB list
are used to initialize the EFI services that require only memory to function correctly. The system is
also guaranteed to be running on only one processor in flat physical mode with interrupts disabled.
The firmware volume is passed to the DXE Dispatcher, which must contain a read-only FFS driver
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to search for the a priori file and any DXE drivers in the firmware volumes. When a driver is
discovered that needs to be loaded and executed, the DXE Dispatcher will use a PE/COFF loader to
load and invoke the DXE driver. The early DXE drivers will produce the DXE Architectural
Protocols, so the DXE Foundation can produce the full complement of EFI Boot Services and EFI
Runtime Services. Figure 4-3 shows the HOB list being passed to the DXE Foundation. The DXE
Foundation consumes the services of the DXE Architectural Protocols shown in the figure and then
produces the EFI System Table, EFI Boot Services Table, and the EFI Runtime Services Table.

System 110 MMIO Firmware Firmware > DXE
Memory Resources Resources Devices Volumes Drivers
HOB List [} [} ) }
PHIT ' : ) ' DXE
HOB » HOB » HOB » HOB » HOB| ... [HOB B

EFI Boot Services Table DXE Services EFI System Table EFI Runtime Services Table

DXE Foundation / DXE Dispatcher

Security Metronome BDS Runtime Vs\;lr?:: le Mg:::‘::r'c Status Code
Architectural Architectural Architectural Architectural . ) Architectural
Architectural Architectural
Protocol Protocol Protocol Protocol Protocol
Protocol Protocol

CPU Timer W?ti‘:::fg Variable Reset Reg:o";':‘e
Architectural Architectural ) Architectural Architectural ;
Architectural Architectural
Protocol Protocol Protocol Protocol
Protocol Protocol

Hardware

Figure 4-3. DXE Architectural Protocols

Figure 4-3 shows all the major components present in the DXE phase. The EFI Boot Services
Table and DXE Services Table shown on the left are allocated from EFI boot services memory.
This allocation means that the EFI Boot Services Table and DXE Services Table are freed when the
OS runtime phase is entered. The EFI System Table and EFI Runtime Services Table on the right
are allocated from EFI runtime services memory, and they do persist into the OS runtime phase.

The DXE Architectural Protocols shown on the left in the figure are used to produce the EFI Boot
Services. The DXE Foundation, DXE Dispatcher, and the protocols shown on the left will be freed
when the system transitions to the OS runtime phase. The DXE Architectural Protocols shown on
the right are used to produce the EFI Runtime Services. These services will persist in the OS
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runtime phase. The Runtime Architectural Protocol in the middle is special. This protocol
provides the services that are required to transition the runtime services from physical mode to
virtual mode under the direction of an OS. Once this transition is complete, these services can no
longer be used.

The following is a brief summary of the DXE Architectural Protocols:

e Security Architectural Protocol:  Allows the DXE Foundation to authenticate files stored
in firmware volumes before they are used.

e CPU Architectural Protocol: Provides services to manage caches, manage interrupts,
retrieve the processor’s frequency, and query any
processor-based timers.

e Metronome Architectural Protocol: Provides the services required to perform very short
calibrated stalls.

e Timer Architectural Protocol: Provides the services required to install and enable the
heartbeat timer interrupt required by the timer services in
the DXE Foundation.

e BDS Architectural Protocol: Provides an entry point that the DXE Foundation calls

once after all of the DXE drivers have been dispatched
from all of the firmware volumes. This entry point is the
transition from the DXE phase to the BDS phase, and it
is responsible for establishing consoles and enabling the
boot devices required to boot an OS.

e Watchdog Timer Architectural Protocol:

Provides the services required to enable and disable a
watchdog timer in the platform.

e Runtime Architectural Protocol:  Provides the services required to convert all runtime
services and runtime drivers from physical mappings to
virtual mappings.

e Variable Architectural Protocol:  Provides the services to retrieve environment variables
and set volatile environment variables.

e Variable Write Architectural Protocol:

Provides the services to set nonvolatile environment
variables.

e Monotonic Counter Architectural Protocol:

Provides the services required by the DXE Foundation to
manage a 64-bit monotonic counter.

e Reset Architectural Protocol: Provides the services required to reset or shut down
the platform.

e Status Code Architectural Protocol: Provides the services to send status codes from the
DXE Foundation or DXE drivers to a log or device.

e Real Time Clock Architectural Protocol:

Provides the services to retrieve and set the current time
and date as well as the time and date of an optional
wakeup timer.
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EFI System Table
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The DXE Foundation produces the EFI System Table, which is consumed by every DXE driver and
executable image invoked by BDS. It contains all the information that is required for these

components to use the services provided by the DXE Foundation and any previously loaded DXE

driver. Figure 4-4 shows the various components that are available through the EFI System Table.

Active Consoles

Input Console

Output Console

Standard Error Console

DXE Services Table

Global Coherency Domain Services
Dispatcher Services

Handle Database

Protocol Interface

System Configuration Table

DXE Services Table

HOB List

ACPI Table

SMBIOS Table

SAL System Table

Boot Services and Structures
Only available prior to OS runtime

Runtime Services and Structures
Available before and during OS runtime

The DXE Foundation produces the EFI Boot Services, EFI Runtime Services, and DXE Services
with the aid of the DXE Architectural Protocols. The EFI System Table provides access to all the

Figure 4-4. EFl System Table and Related Components

active console devices in the platform and the set of EFI Configuration Tables. The EFI
Configuration Tables are an extensible list of tables that describe the configuration of the platform

including pointers to tables such as DXE Services, the HOB list, ACPI, System Management BIOS
(SMBIOS), and the SAL System Table. This list may be expanded in the future as new table types
are defined. Also, through the use of the Protocol Handle Services in the EFI Boot Services Table,

any executable image can access the handle database and any of the protocol interfaces that have

been registered by DXE drivers.
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When the transition to the OS runtime is performed, the handle database, active consoles, EFI Boot
Services, and services provided by boot service DXE drivers are terminated. This termination frees
more memory for use by the OS and leaves the EFI System Table, EFI Runtime Services Table,
and the system configuration tables available in the OS runtime environment. There is also the
option of converting all of the EFI Runtime Services from a physical address space to an OS-
specific virtual address space. This address space conversion may only be performed once.

4.2.4 EFI Boot Services Table

The following is a brief summary of the services that are available through the EFI Boot
Services Table:

40

Task Priority Services:

Memory Services:

Event and Timer Services:

Protocol Handler Services:

Image Services:

Driver Support Services:

Provides services to increase or decrease the current task priority
level. This priority mechanism can be used to implement simple
locks and to disable the timer interrupt for short periods of time.
These services depend in the CPU Architectural Protocol.
Provides services to allocate and free pages in 4 KB increments
and allocate and free pool on byte boundaries. It also provides a
service to retrieve a map of all the current physical memory
usage in the platform.

Provides services to create events, signal events, check the status
of events, wait for events, and close events. One class of events
is timer events, which supports periodic timers with variable
frequencies and one-shot timers with variable durations. These
services depend on the CPU Architectural Protocol, Timer
Architectural Protocol, Metronome Architectural Protocol, and
Watchdog Timer Architectural Protocol.

Provides services to add and remove handles from the handle
database. It also provides services to add and remove protocols
from the handles in the handle database. Additional services are
available that allow any component to look up handles in the
handle database and open and close protocols in the handle
database.

Provides services to load, start, exit, and unload images using the
PE/COFF image format. These services depend on the Security
Architectural Protocol.

Provides services to connect and disconnect drivers to devices in
the platform. These services are used by the BDS phase to either
connect all drivers to all devices, or to connect only the
minimum number of drivers to devices required to establish the
consoles and boot an OS. The minimal connect strategy is how a
fast boot mechanism is provided.
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4.2.5 EFI Runtime Services Table

The following is a brief summary of the services that are available through the EFI Runtime

Services Table:
e Variable Services:

e Real Time Clock Services:

e Reset Services:

e Status Code Services:

e Virtual Memory Services:

4.2.6 DXE Services Table

Provides services to lookup, add, and remove environment
variables from nonvolatile storage. These services depend on the
Variable Architectural Protocol and the Variable Write
Architectural Protocol.

Provides services to get and set the current time and date. It also
provides services to get and set the time and date of an optional
wakeup timer. These services depend on the Real Time Clock
Architectural Protocol.

Provides services to shutdown or reset the platform. These
services depend on the Reset Architectural Protocol.

Provides services to send status codes to a system log or a status
code reporting device. These services depend on the Status
Code Architectural Protocol.

Provides services that allow the runtime DXE components to be
converted from a physical memory map to a virtual memory
map. These services can only be called once in physical mode.
Once the physical to virtual conversion has been performed,
these services cannot be called again. These services depend on
the Runtime Architectural Protocol.

The following is a brief summary of the services that are available through the DXE

Services Table:

e Global Coherency Domain Services:

e DXE Dispatcher Services:

Version 0.9

Provides services to manage I/O resources, memory-mapped I/O
resources, and system memory resources in the platform. These
services are used to dynamically add and remove these resources
from the processor’s Global Coherency Domain (GCD).
Provides services to manage DXE drivers that are being
dispatched by the DXE Dispatcher.
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4.3 DXE Dispatcher

After the DXE Foundation is initialized, control is handed to the DXE Dispatcher. The DXE
Dispatcher is responsible for loading and invoking DXE drivers found in firmware volumes. The
DXE Dispatcher searches for drivers in the firmware volumes described by the HOB list. As
execution continues, other firmware volumes might be located. When they are, the DXE
Dispatcher searches them for drivers as well.

When a new firmware volume is discovered, a search is made for its a priori file. The a priori file
has a fixed file name and contains the list of DXE drivers that should be loaded and executed first.
There can be at most one a priori file per firmware volume, and it is legal to not have an a priori
file at all. Once the DXE drivers from the a priori file have been loaded and executed, the
dependency expressions of the remaining DXE drivers in the firmware volumes are evaluated to
determine the order in which they will be loaded and executed. The a priori file provides a
strongly ordered list of DXE drivers that are not required to use dependency expressions. The
dependency expressions provide a weakly ordered execution of the remaining DXE drivers. Before
each DXE driver is executed, it must be authenticated with the Security Architectural Protocol.
This authentication prevents DXE drivers with unknown origins from being executed.

Control is transferred from the DXE Dispatcher to the BDS Architectural Protocol after the DXE
drivers in the a priori file and all the DXE drivers whose dependency expressions evaluate to TRUE
have been loaded and executed. The BDS Architectural Protocol is responsible for establishing the
console devices and attempting the boot of OSs. As the console devices are established and access
to boot devices is established, additional firmware volumes may be discovered. If the BDS
Architectural Protocol is unable to start a console device or gain access to a boot device, it will
reinvoke the DXE Dispatcher. This invocation will allow the DXE Dispatcher to load and execute
DXE drivers from firmware volumes that have been discovered since the last time the DXE
Dispatcher was invoked. Once the DXE Dispatcher has loaded and executed all the DXE drivers

it can, control is once again returned to the BDS Architectural Protocol to continue the OS

boot process.

4.3.1 The a priori File
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The a priori file is a special file that may be present in a firmware volume. The rule is that there
may be at most one a priori file per firmware volume present in a platform. The a priori file has a
known GUID file name, so the DXE Dispatcher can always find the a priori file. Every time the
DXE Dispatcher discovers a firmware volume, it first looks for the a priori file. The a priori file
contains the list of DXE drivers that should be loaded and executed before any other DXE drivers
are discovered. The DXE drivers listed in the a priori file are executed in the order that they
appear. Ifany of those DXE drivers have an associated dependency expression, then those
dependency expressions are ignored.

The purpose of the a priori file is to provide a deterministic execution order of DXE drivers. DXE
drivers that are executed solely based on their dependency expression are weakly ordered, which
means that the execution order is not completely deterministic between boots or between platforms.
There are cases, however, that require a deterministic execution order. One example would be to
list the DXE drivers that are required to debug the rest of the DXE phase in the a priori file. These
DXE drivers that provide debug services might have been loaded much later if only their
dependency expressions were considered. By loading them earlier, more of the DXE Foundation
and DXE drivers can be debugged. Another example is to use the a priori file to eliminate the need
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for dependency expressions. Some embedded platforms may require only a few DXE drivers with
a highly deterministic execution order. The a priori file can provide this ordering, and none of the
DXE drivers would require dependency expressions. The dependency expressions do have some
amount of firmware device overhead, so this method might actually conserve firmware space. The
main purpose of the a priori file is to provide a greater degree of flexibility in the firmware design
of a platform.

4.3.2 Dependency Grammar

A DXE driver is stored in a firmware volume as a file with one or more sections. One of the
sections must be a PE/COFF image. If a DXE driver has a dependency expression, then it is stored
in a dependency section. A DXE driver may contain additional sections for compression and
security wrappers. The DXE Dispatcher can identify the DXE drivers by their file type. In
addition, the DXE Dispatcher can look up the dependency expression for a DXE driver by looking
for a dependency section in a DXE driver file. The dependency section contains a section header
followed by the actual dependency expression that is composed of a packed byte stream of opcodes
and operands.

Dependency expressions stored in dependency sections are designed to be small to conserve space.
In addition, they are designed to be simple and quick to evaluate to reduce execution overhead.
These two goals are met by designing a small, stack-based instruction set to encode the dependency
expressions. The DXE Dispatcher must implement an interpreter for this instruction set to evaluate
dependency expressions. Table 4-1 contains a summary of the supported opcodes in the
dependency expression instruction set.

Table 4-1. Dependency Expression Opcode Summary

Opcode Description
0x00 BEFORE <File Name GUID>

0x01 AFTER <File Name GUID>
0x02 PUSH <Protocol GUID>
0x03 AND

0x04 OR

0x05 NOT

0x06 TRUE
0x07 FALSE
0x08 END
0x09 SOR

Because multiple dependency expressions may evaluate to TRUE at the same time, the order in
which the DXE drivers are loaded and executed may vary between boots and between platforms
even though the contents of their firmware volumes are identical. This variation is why there is
a weak ordering for the execution of DXE drivers in a platform when dependency expressions
are used.
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4.4 DXE Drivers
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There are two subclasses of DXE drivers:

e DXE drivers that execute very early in the DXE phase
e DXE drivers that comply with the EFI 1.10 Driver Model

The execution order of the first subclass, the early DXE drivers, depends on the presence and
contents of an a priori file and the evaluation of dependency expressions. These early DXE drivers
will typically contain processor, chipset, and platform initialization code. They will also typically
produce the DXE Architectural Protocols that are required for the DXE Foundation to produce its
full complement of EFI Boot Services and EFI Runtime Services. To support the fastest possible
boot time, as much initialization as possible should be deferred to the second subclass of DXE
drivers, those that comply with the EFI 1.10 Driver Model.

The DXE drivers that comply with the EFI 1.10 Driver Model do not perform any hardware
initialization when they are executed by the DXE Dispatcher. Instead, they register a Driver
Binding Protocol interface in the handle database. The set of Driver Binding Protocols are used by
the BDS phase to connect the drivers to the devices required to establish consoles and provide
access to boot devices. The DXE Drivers that comply with the EFI 1.10 Driver Model ultimately
provide software abstractions for console devices and boot devices but only when they are
explicitly asked to do so.

All DXE drivers may consume the EFI Boot Services and EFI Runtime Services to perform their
functions. However, the early DXE drivers need to be aware that not all of these services may be
available when they execute because not all of the DXE Architectural Protocols might have been
registered yet. DXE drivers must use dependency expressions to guarantee that the services and
protocol interfaces they require are available before they are executed.

The DXE drivers that comply with the EFI 1.10 Driver Model do not need to be concerned with
this possibility. These drivers simply register the Driver Binding Protocol in the handle database
when they are executed. This operation can be performed without the use of any DXE
Architectural Protocols. The BDS phase will not be entered until all of the DXE Architectural
Protocols are registered. If the DXE Dispatcher does not have any more DXE drivers to execute
but not all of the DXE Architectural Protocols have been registered, then a fatal error has occurred
and the system will be halted.
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5.1

Introduction

The Boot Device Selection (BDS) Architectural Protocol executes during the BDS phase. The
BDS Architectural Protocol is discovered in the DXE phase, and it is executed when two conditions
are met:

e All of the DXE Architectural Protocols have been registered in the handle database. This
condition is required for the DXE Foundation to produce the full complement of EFI Boot
Services and EFI Runtime Services.

e The DXE Dispatcher does not have any more DXE drivers to load and execute. This
condition occurs only when all the a priori files from all the firmware volumes have been
processed and all the DXE drivers whose dependency expression have evaluated to TRUE have
been loaded and executed.

The BDS Architectural Protocol locates and loads various applications that execute in the preboot
services environment. Such applications might represent a traditional OS boot loader or extended
services that might run instead of or prior to loading the final OS. Such extended preboot services
might include setup configuration, extended diagnostics, flash update support, OEM value-adds, or
the OS boot code.

Vendors such as IBVs, OEMs, and ISVs may choose to use a reference implementation, develop
their own implementation based on the reference, or develop an implementation from scratch.

The BDS phase performs a well-defined set of tasks. The user interface and user interaction that
occurs on different boots and different platforms may vary, but the boot policy that the BDS phase
follows is very rigid. This boot policy is required so OS installations will behave predictably from
platform to platform. The tasks include the following:

e Initialize console devices based on the ConIn, ConOut, and StdErr environment variables.

e Attempt to load all drivers listed in the Driver#### and DriverOrder environment
variables.

e Attempt to boot from the boot selections listed in the Boot#### and BootOrder
environment variables.

If the BDS phase is unable to connect a console device, load a driver, or boot a boot selection, it is
required to reinvoke the DXE Dispatcher. This invocation is required because additional firmware
volumes may have been discovered while attempting to perform these operations. These additional
firmware volumes may contain the DXE drivers required to manage the console devices or boot
devices. Once all of the DXE drivers have been dispatched from any newly discovered firmware
volumes, control is returned to the BDS phase. If the BDS phase is unable to make any additional
forward progress in connecting the console device or the boot device, then the connection of that
console device or boot selection fails. When a failure occurs, the BDS phase moves on to the next
console device, driver load, or boot selection.
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Console Devices

Console devices are abstracted through the Simple Text Output and Simple Input Protocols. Any
device that produces one or both of these protocols may be used as a console device on a
Framework-based platform. There are several types of devices that are capable of producing these
protocols, including the following:

e VGA Adapters: These adapters can produce a text based display that is abstr